
Parallelisation of MACOPA,
a multi-physics asynchronous solver

Ronan Guivarch1, Guillaume Joslin1, Ronan Perrussel2,
Daniel Ruiz1, Jean Tshimanga1, and Thomas Unfer2

1 University of Toulouse, INP(ENSEEIHT)-IRIT, France
2 University of Toulouse, INP(ENSEEIHT)-LAPLACE, France

Abstract. Macopa is a partial differential equations solver based on
a particular local time stepping technique dedicated to multi-physics
and multi-scale problems. Here, some parallelisation strategies – multi-
threading, domain decomposition, and hybrid OpenMP/MPI– are intro-
duced for this solver. Their efficiency is evaluated on a few examples.

1 Context

Numerical simulation has become a central tool for the modeling of many phy-
sical systems (combustion, atmospheric plasmas, etc). Multi-scale phenomena
make the integration of these models difficult in terms of accuracy and computa-
tion time. Time-stepping integration techniques used for modeling such problems
generally fall into two categories: explicit and implicit schemes. In the explicit
schemes, all unknown variables are computed at the current time level from
quantities already available. Time step is then limited by the most restrictive
stability condition over the whole computation domain. In the implicit method,
the time step is no longer limited by a stability condition. However the scheme is
generally not suitable for strongly coupled problems. To solve such problems, a
number of local time stepping approaches have been developed. These methods
are restricted by a local stability condition rather than the traditional global
stability condition.

Macopa is a Partial Differential Equations (PDE) solver based on an asyn-
chronous time stepping technique proposed in [1]. The asynchronous time step-
ping is an explicit local time stepping technique which is consistent in time for
solving a system of conservative PDE. Two data description modes are con-
sidered, cell-centered schemes and cell-vertex schemes. It has been successfully
applied to fluid mechanics, combustion, micro-wave propagation, plasma dis-
charge modeling. Recent developments have extended the paradigm to higher
order accuracy when it is used in combination with a Discontinuous Galerkin
method [2].

The capability of handling a large number of different time steps is obtained
assuming that the time steps themselves can be discretized using an elementary
virtual sub-time step. Under this hypothesis a Discrete Time Scheduler (DTS)
has been introduced in [1]. The architecture of the DTS relies on two concepts:



t = 1 t = 2 t = 3 t = 4

∆t=1

∆t=2
task

action

DTS

Current simulation time

Fig. 1. Example of a sequential DTS

the “action” which is an elementary computation to be done, typically “refresh-
ing” the values of the local variables in a cell of the mesh, and the “task” which
is a list of actions to be treated at a given time tag. This list can eventually
be empty when no actions are required at this given time tag. The DTS itself
is a circular table of tasks with a particular task holding the current time. As
the simulation moves in time, a new time tag in the future is assigned to the
previous task (see Fig. 1). The horizon of the DTS is the size of the sub-time
step multiplied by the number of tasks in the table. Actions, which have time
steps larger than the horizon of the DTS, are managed with delays. The DTS
insures a planning of n actions with a complexity of O(n). When it is required,
the virtual sub-time step is rescaled dynamically during the simulation.

2 Parallelisation

Parallelisation of the asynchronous time stepping was realized using either multi-
threading or mesh partitioning with possible hybridization of both approaches.

2.1 Multi-threading

Multi-threading of the algorithm is possible as long as two issues are tackled:
thread-safety has to be insured when accessing the data within the mesh, but it
also has to be handled when performing the scheduling of the actions.

For thread-safe schedulling of the actions, the strategy that has been followed
is to duplicate the DTS: creating one circular table of tasks for each thread. At
the beginning of the tasks, action lists are balanced from one local DTS to the
others if needed (see Fig. 2). Then each thread processes its actions and replaces
them in the future tasks within its local DTS.

The mesh data issues arises because for conservation equations, say for in-
stance in the finite volume approach, data from the cells on both side of a face
are needed to compute a numerical flux through the face. Then this flux is used



t = 2 t = 3 t = 4

t = 2 t = 3 t = 4

t = 2 t = 3 t = 4

t = 2 t = 3 t = 4

Current simulation time

DTS thread 2

DTS thread 1

Current simulation time

DTS thread 2

DTS thread 1

Fig. 2. Example of a multi-threaded DTS: before starting the treatment at the current
simulation time (left), the Master balances the actions between the threads (right).

in the flux balance computation needed to obtain the time derivatives of the
unknown in both neibouring cells. So if two threads try to refresh two adjacent
cells at the same time, a thread-safety issue occurs. The workaround consists in
splitting the algorithm in two phases. During the first phase, threads treat their
actions. They are allowed to access cell data such as states and time derivatives
for reading but not for writing. In this phase, only intermediate variables such
as fluxes or source terms are written, and for each cell in which the states and
time derivative have to evolve an integration action is then created. This action
is inserted into the task of the thread creating it (so that those updates can
be done safely in parallel). The integration action consists in synchronizing the
states at present simulation time and computing the new time derivatives. For
the integration to be thread safe, we must insure that a single cell appears only
once in the integration lists of all threads. A synchronization step is performed
to remove every duplicated cell from the union of these lists of integration ac-
tions. Then the size of the lists are balanced again and each thread performs its
integration actions.

2.2 Mesh partitioning

Mesh partitioning has been done using the SCOTCH mesh partitioner [3]. The
mesh cells have been weighted with the refreshment frequency (inverse of the lo-
cal time step) and the faces are weighted with the average refreshment frequency
of both cells. Process communications are done using MPI. Each process has its
own DTS. For two adjacent cells on both side of the MPI boundary that have
different time steps, the refreshment time tags do not necessarily match. The
approach that has been developed is to send fluxes/partial residuals with their



time of validity. The time of validity is the next simulation time tag at which
the MPI boundary cell must be updated again.

So from the sender point of view, a message shall be sent each time an
intermediate variable (flux or partial residual) is recomputed. The receiver has
to receive as many messages as needed until the message that contains a validity
time that is beyond its own simulation time. So that the current values can be
incorporated into the current computations.

For instance, in Fig.3, the blue processor 2 has to wait the message
(flux_1_to_2@t4, t6) in order to perform its action at time t5.

∆ T

t1

t3

t4

t6

t5

t2
∆ t

∆ t

∆ t

cell 1 cell 2

message (flux_1_to_2@t1, t3)

message (flux_2_to_1@t2, t5)

message (flux_2_to_1@t5, t7)

message (flux_1_to_2@t3, t4)

message (flux_1_to_2@t4, t6)

Fig. 3. Example of communication between two processors: each message contains, for
two adjacent cells, some physical fields and the time of validity of those fields.

A single MPI message could be sent/received for every single cell at the MPI
border, using for instance different message tags. But this approach faces MPI
latency because of too many very small messages. The workaround that has
been implemented is to manually create larger messages with all single messages
that shall be sent/received at the current simulation time of a MPI process. All
MPI calls are non blocking, so if an action needs a MPI message which is not
available yet, it is pushed back at the end of the list in the task. By doing this,
other actions, which do not need MPI messages (such as interior cells), can be
performed in the meantime.



Furthermore MPI cell actions are considered more urgent than inner cell
actions, so when scheduling the action, MPI cell actions are inserted on top of
the task whereas inner cell tasks are inserted at the bottom of the task.

Note: with this paradigm, from the simulation time point of view, every
process is also “asynchronous”.

Fig. 4. Example of partition with SCOTCH on a 3D case

2.3 Hybrid OpenMP/MPI parallelisation

For the hybrid mode, MPI is used in multiple thread mode so that every thread
in every process can communicate via MPI to any other thread in a locally
connected process. When solving PDE using the cell-vertex data description, two
threads refreshing two adjacent cells could try to read the same boundary point
MPI message. To insure thread-safety in this case, the OpenMP lock concept
is used. A thread shall lock a boundary point prior to try to access to its MPI
message.

3 Performance Results

We present in this section some performance results obtained on the super-
computer EOS of CALMIP.

Its system is a Bullx DLC B710 Blades, Intel Xeon E5-2680v2 10C 2.8GHz,
Infiniband FDR system. EOS got 122,440 cores and its performances are 255,078
Gflop/s as RMAX and 274,176 Gflop/s as RPEAK and is 399 in the last
Top500 list.

http://www.calmip.univ-toulouse.fr/
http://top500.org/system/178436


3.1 OpenMP results

Our test case is a 2D CH4/air premixed laminar flame (see Fig. 5 for a snapshot
of the temperature field). The mesh consists of unstructured triangles for a total
of 73, 850 nodes.

Fig. 5. Temperature field

In Fig. 6 it is shown the speed-up obtained on 1 node where we vary the
number of threads from 1 to 20 (number of cores by node). We notice that the

Fig. 6. OpenMP Strong Scaling on EOS

results are perfectly scalable until 8 threads where the number of actions by task
is probably the limiting factor.



3.2 Domain decomposition results

Our test case is the propagation of an acoustic wave. It is possible to simulate
in a 2D or 3D simple domain.

For the 2D results, two meshes are used. The first mesh is uniform and
made of quadrangles. In the second mesh, quadrangle size varies according to a
polynomial law in both directions. Thus for the last one, the simulation faces a
large amount of different local time steps.

The uniform mesh permits to validate the MPI strategy presented in section
2.2. The non uniform mesh should illustrate the benefit of the asynchronous
behavior of Macopa in a strongly asynchronous case.

0 50 100 150 200 250

0

100

200

Number of cores.

S
p

ee
d

-U
p

.

Ideal

2D uniform

2D asynchronous

(a) 2D - 5000pts per node

0 20 40 60

0

20

40

60

Number of cores.

S
p

ee
d
-U

p
.

Ideal

3D uniform

(b) 3D - 5000pts per node

0 20 40 60

0

20

40

60

Number of cores.

S
p

ee
d

-U
p

.

Ideal

2D uniform

2D asynchronous

(c) 2D - 20,000pts per node

0 50 100 150 200 250 300 350
0

100

200

300

Number of cores.

S
p

ee
d
-U

p
.

Ideal

2D uniform

(d) 2D - 80,000pts per node/20
threads

Fig. 7. Speed-Up on the propagation of an acoustic wave

Fig. 7 shows that it is possible to implement a parallel version using MPI of
the asynchronous algorithm with a reasonable speed-up. However our implemen-
tation is a first step and many optimizations are still possible (see last section
for some perspectives).

The results of Fig. 7 (a) show that for the current parallel implementation
of Macopa, 5, 000 points per core are too low. The MPI boundaries are large



with respect to the interior mesh. In this case, overlapping computation with
communication is not effective. The results for the 3D case (Fig. 7(b)) shows the
same trends. The performance is improved with more points per core (Fig. 7(c)).

The difference between the uniform and the asynchronous cases means there
is still some improvements to propose for the mesh partitioning.

For the hybrid case (open-mp + mpi), we assume that the speed-up with
one node and 20 threads is linear. We know that this assumption is far too
optimistic (see section 3.1) but the point was to assess the MPI performance in
the natural way of using the EOS super-computer: openMP on one node and
MPI between the nodes. In this situation, with 80, 000 points per node, the
scaling is interesting (Fig. 7(d)).

4 Future work

We noticed that it is difficult with SCOTCH to take into account the amount
of work on each cells with asynchronous meshes in order to generate a balanced
partitioning. We are looking for some other partitioners, for instance hypergraph
partitioners [4,5] in order to better express the constraints and obtain a better
partitioning.

Finally, a new version of the standard MPI is now complete. For instance, the
MPI Remote Memory Access (RMA) interface has been re-examined and permits
efficient one-sided programming model within MPI. We should investigate these
new functionalities to determine if they could be useful in Macopa.

Acknowledgements

This research is granted by the project MACOPA (ANR-11-MONU-0019).
This work was performed using HPC resources from CALMIP (Grant 2015-[p1528]).

We also thank Alfredo Buttari for his support and advises.

References

1. T. Unfer, J.P. Boeuf, F. Rogier, F. Thivet, An asynchronous scheme with local time
stepping for multi-scale transport problems: Application to gas discharges, J. Comp.
Phys, 227, 2007, pp.898-918.

2. A. Toumi, G. Dufour, R. Perrusel, T. Unfer, Asynchronous numerical scheme for
modeling hyperbolic systems, Comptes Rendus Mathematique, vol 353, N°9, pp.843-
847.

3. F. Pellegrini, SCOTCH 5.1 User’s Guide, Laboratoire Bordelais de Recherche en
Informatique (LaBRI), 2008.

4. Ü.V. Çatalyürek, C.Aykanat, PaToH: A Multilevel Hypergraph Partitioning Tool,
Version 3.0, Bilkent University, Department of Computer Engineering, Ankara,
06533 Turkey. PaToH is available at http://bmi.osu.edu/umit/software.htm, 1999.

5. M. Rietmann, D. Peter, O. Schenk, B. Uçar, M.J. Grote, Load-Balanced Local Time
Stepping for Large-Scale Wave Propagation, IEEE CPS. 29th IEEE International
Parallel & Distributed Processing Symposium, May 2015, Hyderabad, India, pp.925-
935, <hal-01159687>.

http://bmi.osu.edu/umit/software.html

	Parallelisation of MACOPA, a multi-physics asynchronous solver

