
A vectorized, cache efficient LLL implementation

Artur Mariano, Fábio Correia, and Christian Bischof

Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
artur.mariano@sc.tu-darmstadt.de

Abstract. This paper proposes a vectorized, cache efficient implemen-
tation of a floating-point version of the Lenstra-Lenstra-Lovász (LLL)
algorithm, which is a key algorithm in many fields of computer science.
We propose a re-arrangement of the data structures in LLL, which ex-
poses parallelism and enables vectorization. We show that in one kernel,
128-bit SIMD vectorization works better than 256-bit, while in another
kernel it is the other way around. In high lattice dimensions, this re-
arrangement renders the implementation more cache friendly, thereby
further increasing performance. Our floating-point LLL implementation
is slightly slower than the implementation in the Number Theory Li-
brary (NTL) without vectorization, but 10% faster when vectorized, for
lattices that require exhaustive computation with multi-precision. For
larger lattices, we obtain a speedup factor of 35% over a non-vectorized
implementation.

1 Introduction

Lattices are discrete subgroups of the m-dimensional Euclidean space Rm, with
a strong periodicity property. A lattice L generated by a basis B, a set of linearly
independent vectors b1,...,bn in Rm, is denoted by:

L(B) = {x ∈ Rm : x =

n∑
i=1

uibi, u ∈ Zn}. (1)

where n is the rank of the lattice. When n = m, the lattice is said to be of
full rank. When m is at least 2, each lattice has infinitely many different bases.

Lattice basis reduction is the process of transforming a given lattice basis B
into another lattice basis B´, whose vectors are shorter and more orthogonal
than those of B and where B and B´ generate the same lattice, i.e., L(B) =
L(B´). While there is not a formal definition of lattice reduction, the goal of
lattice reduction algorithms is to yield a nearly orthogonal basis.

The Lenstra-Lenstra-Lovász (LLL) algorithm was the first tractable algo-
rithm to reduce bases [4]. It lays the foundation for many algorithms for prob-
lems on lattices. LLL has applications in many fields in computer science, ranging
from integer programming to cryptanalysis [5]. Although many core concepts in

2 Artur Mariano, Fábio Correia, Christian Bischof

the theory of lattices are already well understood, many questions regarding the
performance of lattice algorithms are still under investigation. Studying the per-
formance potential of lattice algorithms, including LLL, is of great relevance, as
this determines, for example, the potential of attacks to lattice-based cryptosys-
tems.

The original LLL algorithm was described with rational arithmetic, which
was soon realized to be overly expensive. In a breakthrough result, Schnorr et
al. [6] published a floating-point version of LLL that offers good practical per-
formance and moderate stability. Since then, various improvements of LLL’s
stability and its algorithmic performance have been proposed e.g. [2, 3, 5]. For
instance, in 2008, Backes et al. proposed a shared-memory parallel LLL imple-
mentation, with moderate scalability. In a follow-up paper, Backes et al. achieved
an improved speedup factor of 3x for 4 threads and a bit over 4x for 8 threads
[1]. However, to our knowledge, there are no studies regarding the vectorization
of LLL and the impact of its data structures and kernels on cache locality.

Our contributions. In this paper, we propose a re-arrangement of the data
structures in LLL that leverages both cache locality and enables SIMD vec-
torization. The re-arrangement of the data structures offers an immediate gain
in cache locality, while the width of the SIMD vectorization should be chosen
based on the pattern of computation in the kernel. We show that our floating-
point LLL implementation is slower than NTL’s1, but outperforms it by 10%
when employing our optimizations on bases that require multi-precision support.
Moreover, the performance boost of our optimizations increases with the lattice
dimension.

Notation. Vectors and matrices are written in bold face, vectors are written
in lower-case, and matrices in upper-case, as in vector v and matrix M. The ith

coordinate of a vector v is denoted by vi. 〈v,p〉 denotes the inner product of
two vectors v and p. The Euclidean norm of v is given by ||v||. v is called a
zero vector if ||v|| = 0. v′ denotes the floating point value of an exact value v.
dxc rounds x to the nearest integer. A detailed description of the Gram Schmidt
(GS) orthogonalization, which is essential in LLL reduction, can be found in
Section 1.2.2 of [7].

2 A LLL floating-point implementation

We implemented a variant of the floating-point LLL algorithm proposed by
Schnorr et al., described in [6]. For space reasons, we often point to Algorithm
L3FP in [6] throughout the text, instead of replicating its description in this pa-
per. Floating-point LLL implementations are more practical than exact versions,
but errors might occur, and a mechanism to correct them must be in place. The
input of the algorithm is the lattice basis and a reduction parameter δ, which
defines the extent of the reduction. The algorithm works with both exact and
approximate versions of the basis. An exact copy of the basis is always available

1 www.shoup.net/ntl/

A vectorized, cache efficient LLL implementation 3

in the algorithm, since errors in the basis change the lattice and can not be
corrected, unless a copy of the exact basis is kept.

The algorithm starts at stage k = 2, by computing the Gram Schmidt or-
thogonalization, which starts with the computation of the inner product between
two vectors. If the precision loss is too high, the exact dot product has to be
computed, for which we use the exact version of the basis. The Gram Schmidt
orthogonalization outputs the approximate values of one row of the coefficient
vectors of the orthogonal basis, µk, and the square norm of the corresponding
orthogonal vector.

The next step is a size reduction procedure of the vector bk with all vectors
bj , for j = k − 1, ..., 1 (step 3 of L3FP in [6]), if the size reduction is possible.
This procedure consists in subtracting the coordinates of one vector by another,
whose coordinates are multiplied by a constant i.e. (bk = bk − dµk,jc × bj). If
|µk,j | > 1/2 holds true, it is possible to perform a size reduction. If the reduction
takes place, we approximate the k-th row of the basis.

Finally, the reduced vector will be swapped with its predecessors unless the
Lovász condition holds (step 4 of L3FP in [6]). This condition ensures that
successive vectors are at least δ times bigger than their respective predecessor.
The described process is repeated for each vector in the basis, until all vectors
are LLL-reduced. Once this condition is verified, an LLL-reduced basis with
δ is returned. To improve the numerical stability and the performance of the
algorithm, we modified it as follows:

1. As in the NTL implementation, we replaced the 50% precision loss test of
[6] by another, which tolerates a loss of up to 15% in the computation of the
inner products.

2. Unlike L3FP in [6] (cf. line 5, step 2), we check whether the values fit into a
double data type.If they do, we use doubles to compute the dot product as
operations are more efficient than on xdoubles.

3. If a given basis vector bk can be reduced, Schnorr et al. test whether the pre-
cision loss is too high. If so, the algorithm tries to reduce bk again. However,
in our implementation, bk is always reduced again, even when the precision
loss is low. This is also how the algorithm is implemented in NTL. In addi-
tion, we also recompute the Gram Schmidt orthogonalization the first time
bk is reduced, since errors may occur that are hard to correct at a later stage.

2.1 Multi-precision and Data structures

LLL requires multi-precision capability to handle large numbers that may be
present in lattices, including most lattices available from the SVP challenge2.
A viable option to implement multi-precision is the GNU Multiple Precision
Arithmetic Library (GMP) library. NTL can be compiled with either its own
multi-precision module or with GMP. The LLL function in NTL is considerably
faster with its own multi-precision module than with GMP, presumably because

2 www.latticechallenge.org/svp-challenge/

4 Artur Mariano, Fábio Correia, Christian Bischof

double x;
long e;

xdouble

...double *x;
long *e;

...

Fig. 1. Original (left side) and re-arranged (right side) data structures.

memory can be handled much more efficiently (e.g. auxiliary variables for con-
version are not needed) in the multi-precision module. In our implementation,
we used GMP to store exact values.

The extended exponent double precision data type (xdouble), allows to rep-
resent floating point numbers with the same precision as a double, but with a
much larger exponent. It is implemented as a class, where two instance variables
are used, a double x and a long e, to store the mantissa and the exponent, re-
spectively. For any given number in the form x × be, x denotes the mantissa, b
the base and e the exponent.

The data structures of our base implementation consist of 2-dimensional ar-
rays, of either xdoubles for floating point arithmetic (GS coefficients µ and the
approximate basis B´, or the GMP mpz t data type for exact arithmetic (ex-
act basis B), for matrices. For vectors, we used 1-dimensional arrays containing
xdoubles (square norms of the GS vectors - no vectors with exact precision are
needed). In addition, two xdouble arrays are used to store the square norms of
the approximated basis vectors and the result of µk,ici (line 8, step 2 of L3FP).

2.2 Data structure re-organization and vectorization

We now describe two core modifications of our LLL implementation, which im-
prove its performance. Figure 1 shows the re-arrangement of the data structure
to store the approximate version lattice basis. On the left side, we store an array
of N pointers to other arrays, each of which has N elements. Each element is
stored as a xdouble object, which is a struct of two elements (a double and a long).
On the right side, we show the data structure re-arranged. This re-arrangement
results in immediate performance boost, as it is more cache friendly.

As the original data structures are an array of structs (AoS), cache locality
is low. With the re-arrangement, multiple vectors are brought to cache with two
accesses (arrays *x and *e). A vector in dimension N has N coordinates of 16
bytes each (8 bytes for the long and 8 bytes for the double). Therefore, accessing
array *x brings 8 elements to each L1 cache line, assuming a 64 bytes L1 cache
line size. This is also true for cache lines in L2, thus reducing memory access
latency in comparison to the original implementation.

We store the GS coefficients µ in an identical data structure, although it has
the shape of a lower triangular matrix. The re-arrangement is similar, as shown
in Figure 2. The major difference is index calculation. In the new format, µi,j is
accessed at the index (i× (i− 1)/2) + j, thereby incurring in a slight overhead.

A vectorized, cache efficient LLL implementation 5

double x;
long e;

xdouble
double *x;
long *e;

Fig. 2. Original (left side) and re-arranged (right side) data structures.

These re-arrangements also allow one to vectorize (i) the dot product between
two vectors when they fit in doubles (cf. line 5, step 2 of L3FP in [6]) and (ii)
the add and multiply (AddMul) (cf. line 8 of the same source). Note that when
vectors do not fit into doubles, no vectorization is used in (i), as this kernel
represents a tiny percentage of the overall execution time. For (ii), we were able
to partially vectorize the operation, as it is performed exclusively with xdoubles.
We split the kernel in two steps. First, we multiply the elements (xdoubles) of one
array by the corresponding elements of a second array, which has no dependencies
and can be vectorized. In particular, the mantissas are multiplied by one another
and the exponents are summed up, and both operations are vectorized. Then,
we sum up the partial multiplications. However, there is a case statement in the
sum which impedes vectorization.

3 Experiments

As mentioned before, we used NTL’s implementation of LLL as a reference
implementation. We note that NTL’s implementation is faster than our base
implementation due to two main reasons: (1) NTL uses its own multi-precision
module, which is more efficient than GMP (which we used in our implementa-
tion), and (2) NTL’s LLL implementation is more efficient than ours in terms
of Gram Schmidt computations. However, our main goal is to propose optimiza-
tions that can be applied to any LLL implementation (including NTL’s).

Throughout this section, we refer to our implementation as either (i) base
implementation, for the non-optimized, implementation, (ii) optimized/OPT, for
the version with the data structures re-arranged or (iii) vectorized/VEC for the
version with re-arranged data structures and vectorization enabled.

We used random Goldstein-Mayer lattice bases, available on the SVP chal-
lenge website, for which we ran 50 seeds for each dimension. For tests with Ajtai
lattices from the Lattice challenge3, we run tests on a single seed for each di-
mension, as no lattice generator is available. The test platform has two Intel
E5-2698v3 chips at 2,3 GHz, each of which has 16 cores. Each core has 32 KB
of L1 instruction and data cache (a cache line has 64 bytes). L2 caches have 256
KB and are not shared. The L3 cache is shared among all the cores, and has 40
MB. The machine has 756 GBs of RAM.

The code was compiled with GNU g++ 4.8.4. We compiled the code with
the -O2 optimization flag, since it was slightly better than -O3.

3 http://www.latticechallenge.org/

6 Artur Mariano, Fábio Correia, Christian Bischof

5

6

7

8

9

10

11

12

13

14

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Dimension

NTL
Opt
Base
Vec

10.5

11

11.5

12

12.5

93 94 95 96 97

Fig. 3. Execution time of our LLL implementation and NTL’s, for lattices from the
SVP challenge. Note the zoom-in section for Base and OPT, between dimensions 93-97.

3.1 Goldstein-Mayer lattices (low dimensions)

In this section, we show the benchmarks that were carried out for Goldstein-
Mayer lattices that we obtained from the SVP challenge. We used the lattice
generator to generate 50 lattices with seeds 1-50 and thus have a statistical
significant result. We run our LLL implementation and NTL’s implementation
for lattices in dimensions 80-100. The performance of our base implementation
is comparable to NTL’s (it is about 3% slower), as shown in Figure 3 (note the
zoom-in section where the performance difference is accentuated). We did not
extend the benchmarks to higher dimensions as the pattern seems to be fairly
stable and higher dimensions require large chunks of time to be tested (dimension
100 required about 14 seconds × 50 seeds = ≈12 minutes, and dimension 150
would require about 3.5 hours).

We note that our optimized (OPT) version does not perform necessarily
better than the base version. We believe that this happens because the lattices
we tested are too small to exhibit enough cache locality gains to outweigh the
overhead incurred in this version. To prove this, we measured the cache misses
of our implementation at the L1 level cache4, as shown in Figure 4. As the figure
shows, our OPT version incurs much fewer cache misses than the base version,
and in particular, the difference increases with higher lattice dimensions. Ideally,
we would test lattices in dimension 500-1000 but these dimensions would be
impractical to solve on this type of lattices. In the next section, we test lattices
in dimensions 500-800, on a kind of lattices that requires far less time.

Our vectorized (VEC) version obtains speedups of 9-11% over the base ver-
sion. This version incurs, somewhat surprisingly, more cache misses than the
other versions. We believe that this happens because, as performance increases,
more memory accesses are performed within the same timespan, thus shortening
the window opportunity for efficient prefetching.

With 256-bit SIMD vectorization, we could obtain a theoretical maximum
speedup of 4x (as we vectorize 8-byte doubles) and with 128-bit SIMD vectoriza-

4 A complete version of this paper extends this analysis.

A vectorized, cache efficient LLL implementation 7

0

50

100

150

200

250

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

C
a
ch

e
 M

is
se

s
(m

ill
io

n
s)

Dimension

VEC
Base
OPT

Fig. 4. L1 cache misses (in millions) of our implementation on Goldstein-Mayer lattices.

tion we could obtain a theoretical maximum speedup of 2x, for the same reason
(but for 8-byte longs). Thus, in theory, we could achieve an overall speedup of
19.5%, as the dot product loop takes approximately 16% of the execution time
of the base version (for a lattice in dimension 100), for which we used 256-bit
SIMD registers, while the AddMul loop takes approximately 31%, for which we
used 128-bit SIMD registers5. A 11% speedup is in our view a good result, as
the maximum number of vectorized elements is N (in this case 100, at most),
which is not sufficient to achieve the full potential of vectorization. For 256-bit
SIMD vectorization we used AVX2, while for 128-bit SIMD vectorization SSE
4.2 was used.

3.2 Ajtai lattices (high dimensions)

For lattices from the SVP challenge, LLL is only practical below dimension
200, as we mentioned in the previous subsection. Ajtai lattices from the Lattice
challenge allows one to carry out benchmarks with larger lattice dimensions, as
this kind of lattices contain far smaller numbers and LLL-reduces them much
faster. Note that lattices from the SVP challenge have numbers with over 300
digits, while lattices from the Lattice challenge have numbers with no more than
3 or 4 digits.

Figure 5 compares our implementation against NTL’s, for lattices between
dimension 500 and 800. NTL is approximately 2x faster than our base imple-
mentation, as (i) NTL saves more GS computations in higher lattice dimensions
and (ii) converting data types from/to GMP, which we use, incurs increasing
overhead with the lattice dimension. However, the key point in this subsection is
not to show how our implementation compares to NTL, but what performance
gain can be attained when optimizing it. As the figure shows, we obtain a 6%
speedup by simply switching to the optimized (aka with re-organized data struc-
tures) version. This backs up our claim that re-organizing the data structures
delivers higher gains for higher lattice dimensions, as the experiments in the last
subsection were only done for lattices up to dimension 100.

5 As the number of elements that are vectorized in the loop decreases, there may not
be 4 elements, which are necessary to use 256-bit SIMD.

8 Artur Mariano, Fábio Correia, Christian Bischof

0

100

200

300

400

500

600

500 550 600 650 700 750 800

E
xe

cu
ti

o
n

 t
im

e
 (

s)

Dimension

Base
OPT
VEC
NTL

Fig. 5. Execution time of our
LLL implementation and NTL’s
LLL implementation, for Ajtai
lattices from the Lattice chal-
lenge.

In addition, we obtain a speedup of as much
as 35% (from which 6% is obtained from the
data structures re-arrangement). For the vector-
ization, we could achieve a theoretical speedup
of 36.9%, as the dot product loop takes ap-
proximately 26.4% of the execution time of the
base version (for a lattice in dimension 100),
for which we used 256-bit SIMD registers, while
the AddMul loop takes approximately 60.6%, for
which we used 128-bit SIMD registers. The over-
all speedup of 35% (29%, if the speedup from
the re-arrangement is deducted) is thus closer to
the maximum possible speedup of 36.9%, which
backs up our claim that the vectorization benefit
increases with the lattice dimension.

4 Conclusions

Although a comprehensive body of work pertaining to LLL has been published
in the last decades, there are no studies regarding the vectorization of LLL and
the impact of its data structures and kernels on cache locality. In this paper,
we fill this gap in knowledge. We propose a re-organization of the data struc-
tures in the algorithm, which enables the vectorization of two computationally
expensive kernels. We show that (i) our data structure re-arrangement increases
performance with the lattice dimension, (ii) vectorizing the dot product and Ad-
dMul kernels can achieve as much as 35% speedup on larger lattices and (iii) our
implementation is as much as 10% more efficient than NTL’s on smaller lattices.

References

1. W. Backes and S. Wetzel. Improving the Parallel Schnorr-Euchner LLL Algorithm.
ICA3PP’11, pages 27–39, 2011.

2. H. Koy and C. P. Schnorr. Cryptography and Lattices: International Conference,
chapter Segment LLL-Reduction of Lattice Bases, pages 67–80. 2001.

3. H. Koy and C. P. Schnorr. Cryptography and Lattices: International Conference,
chapter Segment LLL-Reduction with Floating Point Orthogonalization, pages 81–
96. 2001.

4. A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coeffi-
cients. Math. Ann., 261:515–534, 1982.

5. P. Q. Nguên and D. Stehlé. EUROCRYPT’05, chapter Floating-Point LLL Revis-
ited, pages 215–233.

6. C. Schnorr and et al. Lattice basis reduction: Improved practical algorithms and
solving subset sum problems. In Math. Programming, pages 181–191, 1993.

7. D. Stehlé. Floating-point LLL: theoretical and practical aspects. In The LLL
Algorithm - Survey and Applications, pages 179–213. 2010.

