
Performance Analysis of SA-AMG Method by
Setting Extracted Near-kernel Vectors

Naoya Nomura1, Akihiro Fujii1, Teruo Tanaka1, Kengo Nakajima2,
and Osni Marques3

1 Kogakuin University, Tokyo, Japan
em15016@ns.kogakuin.ac.jp

2 The University of Tokyo, Tokyo, Japan
3 Lawrence Berkeley National Laboratory

Abstract. The smoothed aggregation algebraic multigrid (SA-AMG)
method is among the fastest solvers for large-scale linear equations. The
SA-AMG method achieves good convergence by generating small-sized
matrices from the original matrix problem. However, the convergence
of the method can be further improved by setting near-kernel vectors.
Our research investigates the effectiveness of setting multiple near-kernel
vectors and finds the important near-kernel vectors for fast convergence.
Our method is applied to the 3-dimensional elastic problem. The known
near-kernel vectors in this problem (the parallel translation and rotation
vectors) improve the convergence and execution time of the SA-AMG
method. In the present study, we extract multiple near-kernel vectors
by an iterative process known as the V-cycle. In numerical experiments,
suitable choice of the near-kernel vectors reduced the iteration number
by nearly two-thirds and halved the execution time, relative to the known
near-kernel vectors.

Keywords: Linear solver・Algebraic multigrid method・Near-kernel vec-
tors・Performance evaluation

1 Introduction

Iterative solutions to large-scale linear equations Ax = b are often required
in scientific computing. Among the fastest solvers for these equations is the
algebraic multigrid (AMG) method [1], a multi-level method that builds smaller
matrices from the matrix problem. A variant called smoothed aggregation AMG
(SA-AMG) [2][3][4] is effective for solving various problems and is widely used.

The SA-AMG method comprises a setup part and a solve part. The setup
part creates a graph structure based on the matrix problem and defines a coarse
problem based on aggregates of unknowns. Recursive application of this process
generates multiple small-sized matrices. The solve part repeatedly applies relax-
ation (e.g., the Jacobi method) to the hierarchical matrices constructed in the
setup part, thereby achieving rapid convergence. The structure is hierarchical,
with fine levels (large matrices) and coarser levels (small matrices). The finest
level corresponds to the original matrix problem.



2 N. Nomura, et al.

The SA-AMG method can incorporate error components which are difficult
to correct by ordinary relaxation methods. These error components typically
correspond to the near-kernel vectors, defined as non-zero vectors x satisfying
Ax ≈ 0. The SA-AMG method sets these error components, and efficiently
corrects them by moving them to coarser levels.

In this research, we focus on the 3-dimensional elastic problem, in which
the near-kernel vectors are the parallel translation and rotation vectors. Setting
these near-kernel vectors improves the convergence of the SA-AMG method in
the target problem. To our knowledge, methods for extracting near-kernel vec-
tors and their efficiency have been rarely reported other than αSA [5], which
is described in section 4. Thus, this study reports a simple extraction method
for multiple near-kernel vectors using V-cycles, and numerically evaluates its
performance.

2 SA-AMG method

This section describes the SA-AMG method, which creates and solves hierarchi-
cal matrices from the matrix problem.

The SA-AMG method is among the fastest solvers for large-scale linear equa-
tions. It creates multiple small sized matrices from the matrix problem, and uses
them to solve the matrix problem.

Fig. 1 shows the solve part of the SA-AMG method, which performs matrix
vector multiplication and relaxation. The top level is the original matrix problem,
and progressively coarser levels are represented by progressively smaller matrices.
The number of levels depends on the size of the matrix problem. Data are moved
between levels by the inter-level prolongation and restriction matrices. First, the
relaxation method is applied to the finest problem. Next, the residual vector is
calculated and multiplied by the restriction matrix, which moves it to a coarser
level. At the coarser level, the coarsened vector is set as the right-hand-side
vector. After applying relaxation at the coarser level, the corrected vector is
solved and multiplied by the prolongation matrix, which moves it to a finer
level. The solution is added to the solution vector at the finer level. Finally,
relaxation is repeated at the finer level. The solve part is called the V-cycle.

There are many types of AMG methods with different ways of creating the
inter-level matrices [6]. In this research, we use the SA-AMG method, which
creates coarser level matrices from a graph structure based on the matrix prob-
lem. The problem unknowns and non-zero elements correspond to nodes and
edges, respectively. The SA-AMG method then aggregates the unknowns, and
assigns each aggregate to a node at the coarser level. Each node at the finer level
belongs to a corresponding aggregate. For interpolation, the SA-AMG method
sets weight values on each of the aggregate nodes. The weights are stored in an
inter-level matrix. The coarser level matrix is calculated as a 3-matrix product
RAP , where R and P are restriction and prolongation matrices respectively. To
improve the convergence of SA-AMG, the inter-level matrix can be constructed
from the near-kernel vector information.



Performance Analysis of SA-AMG Method 3

𝐴1𝑥1 = 𝑏1

𝐴2𝑥2 = 𝑏2

𝐴3𝑥 3 = 𝑏3

𝐴2𝑥2 = 𝑏2

𝐴1𝑥1 = 𝑏1

:Relaxation

𝑟1 ← 𝑏1 − 𝐴1𝑥1
𝑏2 ← 𝑅2𝑟1

Level 1

(Original problem)

Level 3

(Coarsest small matrix)

Level 2

𝑟2 ← 𝑏2 − 𝐴2𝑥2
𝑏3 ← 𝑅3𝑟2

𝑥1 ← 𝑥1 + 𝑃2𝑥2

:Move level

𝑥2 ← 𝑥2 + 𝑃3𝑥3

R:Restriction matrix

P:Prolongation matrix

Fine level

Coarse level

　　

Fig. 1. V-cycle of SA-AMG
　　

0

1

3

2

Problem 𝐴

1

1

1

1

Near-kernel vector 𝑣 Matrix 𝑃

Aggregate 1

Aggregate 2

4

5

7

6

1

1

1

1

1

2

3

4

5

6

7

8

1

1

1

2

1

1

3

4

1

1

5

6

1

1

7

8

0

0

　

Fig. 2. Construction of the prolongation
matrix from the near-kernel vectors

3 Near-kernel vector

In this section, we explain the near-kernel vector and its setting in the SA-AMG
method.

The near-kernel vector is a vector x that satisfies Ax ≈ 0(x ̸= 0). The
equation Ax = b is solved by a regular iterative solver, and the solution vec-
tor is updated using the vector b. However, the error components of the near-
kernel vectors cannot be corrected by this vector. Consequently, the convergence
stagnates. For moving the near-kernel vector components to coarser levels, the
SA-AMG method calculates inter-level operators from the near-kernel vectors.
Thus, these components are efficiently corrected at coarser levels, and rapid
convergence is achieved [2][3][4]. In some cases, the near-kernel vectors can be
specified from the problem settings. For example, the near-kernel vectors of the
elastic problem are the translation and rotation vectors.

Fig. 2 illustrates the setting of the near-kernel vectors in the inter-level ma-
trix. In this figure, the prolongation matrix is constructed from two near-kernel
vectors and two aggregates. In particular, the prolongation matrix is created by
selecting the corresponding elements from the near-kernel vectors for each ag-
gregate. In the SA-AMG method, the number of columns in the prolongation
matrix increases proportionally to the number of near-kernel vectors, increasing
the calculation costs. Therefore, this method has a trade-off between the number
of near-kernel vectors and the execution time.

Fig. 3 shows how the number of iterations for convergence depends on the
number of near-kernel vectors in the elastic problem. The left panel illustrates the
target problem of this experiment. The matrix structure of the elastic problem
is described in section 5.1. The object in this problem comprises a soft upper
part and hard lower part. A force is applied over a small area on the upper
side. The Young’s modulus ratio is 1:0.8, and the Poisson’s ratio is 0.3:0.3. The
right panel of Fig. 3 graphs shows the number of iterations to convergence.
The legend “Number of kernel vector” denotes the designated number of near-
kernel vectors. “Number of kernel vectors:1” uses a constant vector, “Number
of kernel vectors:3” uses only translation vectors, “Number of kernel vectors:6”
uses both translation and rotation vectors. This experiment is a weak scaling test



4 N. Nomura, et al.

Force

Upper half is soft

-Young’s modulus・・・1:0.8

- Poisson ・・・0.3:0.3

0

10

20

30

40

50

60

70

80

90

100

1 8 64 216 512

N
u

m
b

er
 o

f 
it

er
at

io
n

s

Number of processes

Number of kernel vectors:1

Number of kernel vectors:3

Number of kernel vectors:6

　

Fig. 3. Effect of multiple near-kernel vectors on the number of iteration in the SA-AMG
method

(with a local domain size per process of 6×15×60). The problem domain size
increases proportionally to the number of processes. We observe that setting
more near-kernel vectors reduces the number of iterations because the near-
kernel vectors are known from the problem settings. In the next section, we
consider the extraction of additional near-kernel vectors that are not known
from the problem settings.

4 Near-kernel vector extraction

The section describes the method for near-kernel vector extraction. There is a
related work which proposes near-kernel vector extraction using V-cycles [5].
The authors of [5] calculate the coarser level near-kernel vectors at first, then
interpolate them to the finest level and use them as near-kernel vectors. On the
other hand, we use V-cycle iterations to calculate near-kernel vectors directly.
In this paper, the near-kernel vectors are extracted by the following procedure:

1. Initialize the vector x by assigning random numbers.
2. Iterate the V-cycle µ times to solve Ax = 0
3. Set the solution vector x in Step 2 as an additional near-kernel vector. If the

number of near-kernel vectors is insufficient, return to Step 1.
4. Output the extracted near-kernel vectors.

After solving Ax = 0 through V-cycle iterations, we are left with the near-kernel
error component, which cannot be solved by the V-cycle. The V-cycle iterations
are executed on near-kernel vectors extracted in previous iteration steps. Thus,
the new near-kernel vector is considered to differ from the previously found near-
kernel vectors. It must be noted that V-cycle needs near-kernel vector setting
from the beginning. At first, those vectors must be found through the problem
settings. In subsequent processes, the method extracts independent near-kernel
vectors. In Step 2, the parameter µ is provided as an input. This parameter
specifies the number of V-cycle iterations and largely determines the performance
of SA-AMG. The optimization of µ will be considered in future works. In the
present study, we set µ to 20.



Performance Analysis of SA-AMG Method 5

5 Experimental results

5.1 Experimental environments and problem setting

Experiments were performed on an FX10 supercomputer system (Oakleaf-FX)
[7] at the University of Tokyo. Each node of the FX10 is equipped with one
SPARC64 IXfx processor (1.848GHz, 16 cores) and 32 GB memory and is con-
nected through the 6D mesh/tour network (5GB/s/link, bidirectional). We launched
one process per core (Flat MPI model), employing up to 512 cores.

The experimental subject was the 3-dimensional elastic problem, in which an
elastic object is pressed under a constant force, and the displacements of all parts
of the object are to be determined. The problem was constructed as a 3×3 block
matrix at each node. This problem solves linear elasticity problems in simple
cube geometries of media with heterogeneous material properties using FEM.
The object consisted of an inner hard cube and an outer soft cube, and a force
was applied to a small area on the upper face (see Fig. 4). The Young’s modulus
ratio (indicating the stiffness of the materials) was 5:0.5, where the high and low
values correspond to hard and soft materials, respectively. And Poisson’s ratio
is 0.3:0.3. Moreover, the experiment was performed as a weak scaling (with a
local domain per process of 15×15×15). The problem domain was divided into
several subdomains with equal intervals on each axis.

The experiment was implemented in the AMGS library [8], which solves
large-scale linear equations by the AMG method. The solve part is executed by
the GPBiCG method [9], and one iteration of V-cycle is used as a preconditioner.
The relaxation procedure of the solve part was performed twice per level by the
Gauss-Seidel method, ignoring the data dependency beyond the border of the
processing domain. The coarsest level was determined as less than 100 unknown
blocks. That is, there are less than 100 × k unknowns at the coarsest level, when
it is set with k near-kernel vectors. The termination criterion for the 2-norm of
the relative residuals was set to 1.0×10−7. The maximum number of iterations
was set to 500.

Force

The inside is hard object

- Young’s modulus ・・・5:0.5

- Poisson ・・・0.3:0.3

Side

Top
Force

Stiffness area

Fig. 4. Setup of the experimental elastic problem

5.2 Experimental results

In this experiment, we investigated the performance of the SA-AMG method by
changing the number of near-kernel vectors. The near-kernel vector setups are



6 N. Nomura, et al.

Table 1. A target of comparison

near-kernel vectors Details

3 provided Parallel translation in each axis direction (X,Y,Z)
6 provided Parallel translation + rotation on each axis (X,Y,Z)

3+1, 3+2, ... Parallel translation + extracted near-kernel vectors (up to 7)

compared in Table 1. The near-kernel vectors in the extraction process were set
as the parallel translation at first.

Fig. 5 shows the results. The five graphs correspond to results with 1, 8, 64,
216 and 512 processes, respectively. The X axis corresponds to different settings
for the near-kernel vectors. The bar indicates the time, while the line indicates
the number of iterations for convergence. The bar’s element “Setup” and “Solve”
report the execution time of the setup part and solve part, respectively. If the
number of iteration exceeds 500, the execution time is not plotted. In this exper-
iment, we disregarded the time of extracting the near-kernel vectors (In single
process, the time to extract 7 vectors was 17 seconds). As shown in Fig. 5, the
number of iterations and execution time were lower for the best extracted near-
kernel vectors than when 3 and 6 near-kernel vectors were provided. However,
setting many near-kernel vectors does not always improve the convergence. For
example, when running 512 processes, the 3+7 near-kernel vector setting failed
to converge. In 64 processes, the lowest iteration number was achieved for 6 near-
kernel vectors, whereas 3+1 near-kernel vectors achieved the lowest execution
time. This result can be explained by the larger processing time for 6 than for
3+1 provided near-kernels.

Fig. 6 plots the best results of Fig. 5. The left and right panels plots the
number of iterations and the execution time, respectively. This figure shows
that by appropriately determining the near-kernel vectors, we can dramatically
reduce the number of iterations. Even in the largest problem (512 processes),
the best of the extracted vectors approximately halved the number of iterations
and reduced the execution time by approximately 40%, relative to the case of 6
provided near-kernel vectors.

6 Conclusion

In this paper, we investigated whether extracting the multiple near-kernel vec-
tors by V-cycle iterations improved the performance of the SA-AMG method.
Evaluations were performed on the 3-dimensional elastic problem. The results of
multiple extracted near-kernel vectors were compared with those of the known
near-kernel vectors in the elastic problem (parallel translation and rotation vec-
tors). In the largest problem (512 processes), setting the extracted near-kernel
vectors halved the iteration number and decreased the solving time by approx-
imately 40%, relative to setting the ordinary translation and rotation vectors.



Performance Analysis of SA-AMG Method 7

Thus, the ordinary V-cycle iterations turned out to extract effective near-kernel
vectors for convergence. Another problem is the scalability for cases with many
nodes. Fig 6 shows that both the number of iterations and the computation
time increase, as the problem size increases in weak scaling computation. This
is mainly because of localized block-Jacobi-type Gauss-Seidel smoothers in SA-
AMG procedure.The increasing in the number of iterations is very significant for
ill-conditioned problems, while this effect is not so large in Fig 3 where condition
number is close to 1. Stabilization of the localized smoother is a very critical is-
sue. Some remedies described in [10], such as extension of overlapped zones, will
be introduced in the future.

Let us conclude with remarks on future directions. First, setting many near-
kernel vectors did not always improve the performance; in particular, the method
sometimes extracted inappropriate near-kernel vectors that failed to converge.
Therefore we must investigate the extracted near-kernel vectors. The relation-
ships between the residual history of the near-kernel vector extraction and the
effectiveness of the near-kernel vectors will also be examined in future study.

References

1. Pereira, F. H., Verardi, S. L. L., and Nabeta, S. I.: A fast algebraic multigrid
preconditioned conjugate gradient solver, Applied Mathematics and Computation
179, pp.344-351 (2006)

2. Vanek, P., Brezina, M. and Mandel, J.: Convergence of Algebraic Multigrid Based
on Smoothed Aggregation, Numerische Mathematik, vol 88, pp.559-579 (2001)

3. Vanek, P., Mandel, J. and Brezina, M.: Algebraic Multigrid by Smoothed Aggrega-
tion for Second and Fourth Order Elliptic Problems, Computing, Vol.56, pp.179-
196 (1998)

4. Chan, T. F. and Vanek, P.: Multilevel algebraic Elliptic Solvers, UCLA Math,
Dept. CAM Report (1999)

5. Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., Mccormick, S. and Ruge,
J.: Adaptive Smoothed Aggregation (αSA), SIAM J. Sci. Comput, Vol. 25, No.6,
pp.1896-1920 (2004)

6. Fujii, A. and Oyanagi, Y.: Evaluation of Algebraic Multi-grid Method: An Efficient
Linear Solver for Scientific Simulations, Simulations, 28(4), 149-154, 2009-12-15,
pp.9-14 (2009)

7. Information Technology Center: The University of Tokyo, http://www.cc.u-
tokyo.ac.jp/

8. AMGS Library: http://hpcl.info.kogakuin.ac.jp/lab/software/amgs
9. Zhang, S.-L.: GPBi-CG: Generalized Product-type Methods Based on Bi-CG for

Solving Nonsymmetric Linear Systems SIAM J. Sci. Comput, Vol. 18, No.2, pp.537-
551 (1997)

10. Nakajima, K.: Strategies for Preconditioning Methods of Parallel Iterative Solvers
in Finite-Element Applications on Geophysics, Advances in Geocomputing, Lecture
Notes in Earth Science 119, pp.65-118 (2009)



8 N. Nomura, et al.

0

5

10

15

20

25

30

35

40

45

50

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

3p 6p 3+1 3+2 3+3 3+4 3+5 3+6 3+7 3p 6p 3+1 3+2 3+3 3+4 3+5 3+6 3+7

Number of processes:1 Number of processes:8

It
er

at
io

n
s

T
im

e 
[s

ec
.]

Setup Solve Iterations

Near-kernel vectors

0

20

40

60

80

100

120

140

160

180

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

3p 6p 3+1 3+2 3+3 3+4 3+5 3+6 3+7 3p 6p 3+1 3+2 3+3 3+4 3+5 3+6 3+7

Number of processes:64 Number of processes:216

It
er

at
io

n
s

T
im

e 
[s

ec
.]

Setup Solve Iterations

Near-kernel vectors

0

50

100

150

200

250

300

350

400

450

500

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

3p 6p 3+1 3+2 3+3 3+4 3+5 3+6 3+7

Number of processes:512

It
er

at
io

n
s

T
im

e 
[s

ec
.]

Near-kernel vectors

Setup Solve Iterations

Fig. 5. Experimental results of various settings of near-kernel vectors

0

100

200

300

400

500

1 8 64 216 512

N
u

m
b

er
 o

f 
it

er
at

io
n

s

Number of processes

3 provided
6 provided
Best in extracted vectors

0

20

40

60

80

100

120

1 8 64 216 512

E
x

ec
u

ti
o

n
 t

im
e 

[s
ec

.]

Number of processes

3 provided
6 provided
Best in extracted vectors

Fig. 6. Number of iterations(left) and execution time (right) for various near-kernel
vectors (3 provided, 6 provided, and the best number of extracted near-kernel vectors)


