
SIMD Parallel Sparse Matrix-Vector and
Transposed-Matrix-Vector Multiplication

in DD Precision

Toshiaki Hishinuma1, Hidehiko Hasegawa12, and Teruo Tanaka2

1 University of Tsukuba, Tsukuba, Japan
2 Kogakuin University, Tokyo, Japan

hishinuma@slis.tsukuba.ac.jp

Abstract. We accelerate a double precision sparse matrix and DD vec-
tor multiplication (DD-SpMV), and its transposition and DD vector
multiplication (DD-TSpMV) by using SIMD AVX2 for Krylov subspace
methods. We compare some storage formats of DD-SpMV and DD-
TSpMV for AVX2 to eliminate performance degradation factors in CRS.
Our experience indicates that BCRS4x1, with fitting block size to the
SIMD register’s length, is effective.

Keywords: Matrix storage format, SpMV, Transposed SpMV, double-
double arithmetic, AVX2

1 Introduction

High precision arithmetic operations are used to reduce rounding errors and
improve the convergence of Krylov subspace methods [1]; however, they are very
costly. A double-double precision (DD) arithmetic, one type of high precision
arithmetic, is constructed by a combination of double precision operations but
requires more than 10 double precision operations for one DD operation [2].
However, DD can be expected to greatly speed up performance because it has a
smaller memory access rate than double precision arithmetic.

A sparse matrix and vector multiplication takes a lot of time of the Krylov
subspace methods. We have accelerated a double precision sparse matrix and DD
vector multiplication (DD-SpMV), and its transposition and DD vector multi-
plication (DD-TSpMV) using AVX2 (advanced vector extensions 2) [3] for an
iterative solver library [4][5]. The AVX2 instruction set is a 256-bit single in-
struction multiple data streaming (SIMD) instruction set, and it provides a
fused multiply and add instruction (FMA).

AVX2 must compute, load, and store four double precision variables at the
same time. In DD-SpMV and DD-TSpMV for a compressed row storage for-
mat (CRS) [6], a non-continuous memory load and storage are needed for using
AVX2. However, they degrade performance.

To avoid them, we use the BCRS format [6], which divides matrix A into r × c
small dense submatrices (called blocks), which may include some zero-elements.

2 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

BCRS4x1 (r = 4, c = 1) would be suitable for DD-SpMV and DD-TSpMV using
AVX2 because block size fits the SIMD register’s length. However, BCRS4x1
requires at most four times the amounts of operations and data as CRS.

In this paper, we show that effective implementation of DD-SpMV and DD-
TSpMV improves performance of AVX2. We analyze the optimal storage format
to eliminate performance degradation factors in CRS.

2 The implementation of DD-SpMV and DD-TSpMV
using AVX2

2.1 DD arithmetic

DD arithmetic consists of combinations of double precision values only and uses
two double precision variables to implement one quadruple precision variable [2].
A DD addition consists of 11 double precision additions, and a DD multiplication
consists of two double precision additions, four double precision multiplications,
and two double precision FMA instructions. We implemented DD vector x using
two double precision arrays (x.hi and x.lo) for SIMD acceleration.

In many cases, for an iterative solver library, input matrix A is given in
double precision and iteratively used. To reduce the memory access of the sparse
matrix and vector product, we used the double precision sparse matrix A and
DD precision vector x product.

The byte / flop of DD operations are lower than those of double precision
operations. For example, in the kernel of DD-SpMV stored in CRS, the memory
requirement is 28 bytes, consisting of 8 bytes for matrix A, 16 bytes vector x,
and 4 bytes for vector column index. We postulate that loading vector x have
cache miss. The byte / flop of double precision SpMV is 20 (bytes) / 2 (flops) =
10, that of DD matrix and DD vector product is 36 (bytes) / 21 (flops) = 1.71,
and that of DD-SpMV is 28 (bytes) / 19 (flops) = 1.47. The byte / flop value of
DD-SpMV is 15% that of double precision SpMV and 86% that of DD matrix
and DD vector product, so DD-SpMV can be expected to greatly speed up the
SIMD acceleration because of the amount of data required for the memory.

2.2 Intel SIMD AVX2

In this section, we describe SIMD AVX2. AVX2 must compute, load, and store
four double precision variables at the same time. We used three types of load
AVX2 instructions (mm256 load pd (load), mm256 broadcast sd (broadcast),
and mm256 set pd (set)) and one store instruction (mm256 store pd (store)).
The “store” is storing four continuous double precision elements from register
to memory that begin with the same source address. The “load” instruction
is loading four continuous double precision elements that begin with the same
source memory address. The “broadcast” is loading one double precision element
from one source memory address to all elements of the SIMD register. The “set”
is loading four double precision elements from four different source memory
addresses.

SIMD Parallel SpMV and TSpMV in DD Precision 3

We implemented three macro-functions to SIMD-ize DD-SpMV and DD-
TSpMV easily. To perform random store operation “scatter”, we implemented
a “SCATTER” macro function by using “store” and ordinary instructions.

To store the summation of elements in the SIMD register storage to one
source address, we implemented a “REDUCTION” macro function that com-
putes a summation of four DD variables in two SIMD registers (hi and low). It
consists of 11 (DD addition) × 3 = 33 double precision addition by ordinary
instruction.

To judge the processing for the remainder of AVX2, which is one, two, or
three elements, for each row in the case of CRS, we implemented a “FRAC-
TION PROCESSING” macro function. It assigns zero to the operand of “set”
at the execution and three conditional branching.

“Set”, “SCATTER”, “REDUCTION”, and “’FRACTION PROCESSING”
are very costly. “Set” and “SCATTER” occur in random memory load and
storage. The “REDUCTION” needs more computations because it cannot be
SIMD-ized. The “FRACTION PROCESSING” occurs in conditional branching.

2.3 DD-SpMV accelerated by AVX2

The CRS format is expressed by the following three arrays: ind, ptr, and val. The
double precision val array stores values of the non-zero elements of matrix A, as
they are traversed row-wise. The ind array is the column indices corresponding
to values, and ptr is the list of value indexes where each row starts. DD-SpMV
in CRS using AVX2 is the following C code:

#pragma omp parallel for private (j, av, xv, yv)

for(i=0;i<N;i++){

yv = set_zero();

for(j=A->ptr[i];j<A->ptr[i+1]-3;j+=4){

xv = set(x[A->ind[j+0]],..,x[A->ind[j+3]]);

av = load(&A->val[j]);

yv += av * xv;

}

yv = FRACTION_PROCESSING();

y[i] = REDUCTION(yv);

}

Variables; av, xv, and yv are 256 bit SIMD register variables, x, y are double
precision array, and A is CRS format. The “set zero” initializes SIMD register.

It needs “set” of x, “REDUCTION” of y, and “FRACTION PROCESSING”.
They adversely affect the performance.

The BCRS r × c is expressed by the following three arrays: bind, bptr, and
bval. The length of double precision array bval is the number of blocks (blk) ×
r × c stores values of non-zero blocks, as they are traversed row-wise. The bind
array is the column indices corresponding to the blocks, and bptr is the list of
block indexes where each block row starts. DD-SpMV in BCRS4x1 using AVX2
is the following C code:

4 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

Table 1. Features of DD-SpMV in each storage format.

CRS BCRS1x4 BCRS4x1 ELL

loading x set load broadcast set
loading y set zero set zero set zero set zero
storing y REDUCTION REDUCTION store store
fraction processing each row none none each col.
computation ratio (max) 1 4 4 the num. of row

#pragma omp parallel for private (jb, av, xv, yv)

for(ib=0;ib<block_row;ib++){ // block_row is about N/4.

yv = set_zero();

for(jb=A->bptr[ib];jb<A->bptr[ib+1];jb++){

xv = broadcast(x[A->bind[jb]]);

av = load(&A->bval[jb * 4]);

yv += av * xv;

}

y[i*4] = store(yv);

}

Table 1 shows feature of CRS, BCRS1x4, BCRS4x1, and ELL[6]. The BCRS4x1
does not need “set”, “REDUCTION”, and “FRACTION PROCESSING”. The
BCRS1x4 needs “REDUCTION”, and the ELL needs “set” of x. In DD-SpMV,
BCRS4x1 would be the best because it eliminates performance degradation fac-
tors in CRS. However, it needs more operations and data. Block size must fit the
SIMD register’s length. In inner-loop (j-loop), DD-SpMV CRS needs four double
precision elements of A and four non-contiguous and indirect DD elements of
x. Meanwhile, BCRS4x1 only needs four double precision element of A and one
indirect DD element of x. The amount of byte / flop of BCRS3x1 is smaller than
that of CRS. The memory requirement of BCRS4x1 in the inner-loop is smaller
than that of CRS.

2.4 DD-TSpMV accelerated by AVX2

In this section, we suggest fast computation methods of DD-TSpMV in making
only A and changing the memory access pattern. DD-TSpMV in CRS using
AVX2 is the following C code:

num_threads = omp_num_threads()

work = malloc(num_threads * N)

#pragma omp parallel private (i, j, k, av, xv, yv){

k = omp_get_thread_num();

#pragma omp for

for(i=0;i<N;i++){

xv = broadcast(&x[i]);

SIMD Parallel SpMV and TSpMV in DD Precision 5

for(j=A->ptr[i];j<A->ptr[i+1]-3;j+=4){

jj = j + k + N //integer type

yv = set(y[A->ind[j+0]],..,y[A->ind[j+3]]);

av = load(&A->val[j]);

yv += av * xv;

yv = SCATTER(work[A->ind[jj+0],..,work[A->ind[jj+3]]);

}

work = FRACTION_PROCESSING(A,x);

}}

for(i=0;i<N,i++)

y[i] = work[A->ind[j+0+k*N]+,...,+work[A->ind[jj+3]];

DD-TSpMV in CRS needs “set” of y, “SCATTER” of y, and “FRACTION PROCESSING”.
In multi-threading, DD-TSpMV in CRS needs the number of thread work

vectors and their array-reduction.
The performance of DD-TSpMV in BCRS4x1 applied additional column-wise

multi-threading will be improved, because BCRS4x1 only computes one column
in j-loop, i.e., it can be thread-partitioned easily. DD-TSpMV in BCRS4x1 using
AVX2 of column-wise multi-threading is the following C code:

num_threads = omp_num_threads()

work = malloc(4* N) // The length of SIMD.

#pragma omp parallel private(work, jb, av, xv, yv){

alpha = N / num_threads * k

beta = N / num_threads * (k+1)

for (ib = 0 ; ib < brock_row ; ib++){

xv = load(x[ib]):

#pragma omp for

for (jb = bptr[ib] ; jb < bptr[ib+1] -3 ; jb++){

if (alpha < bind[jb] <= beta){ //thread-partitioning

av = load(A->bval[jb]);

yv = broadcast(work[bind[jb]);

yv += av * xv;

work[num_threads][ib] = store(yv);

}}}}

summation_of_work_vectors();

The summation_of_work_vectors consists of 3 × N times “REDUCTION”.
BCRS4x1 can change the “REDUCTION” to “store” and the summation of
four work vectors, which are the SIMD register’s length. It can continuously
store work vectors in j-loop. It needs only four work vectors, i.e., it can be
expected to speed up the performance on the more multi-core systems.

Table 2 shows features of TSpMV in each storage format. Its BCRS4x1
applied column-wise multi-threading, and the others applied row-wise multi-
threading.

BCRS1x4 and BCRS4x1 do not need “set” “scatter”, or “reduction”. ELL
needs “set” and “REDUCTION”. In addition, BCRS4x1 needs only four work

6 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

Table 2. Features of DD-TSpMV in each storage format.

CRS BCRS1x4 BCRS4x1 ELL

Loading x broadcast broadcast load broadcast
Loading y set load broadcast set
Storing y SCATTER store store REDUCTION
Fraction processing each row none none each col.
Computation ratio (max) 1 4 4 the num. of row

Table 3. Elapsed times of DD-SpMV and DD-TSpMV in 4 threads [ms].

SpMV TSpMV
row-wise multi-threading column-wise multi-threading

CRS 2.14 3.97 4.31
BCRS1x4 2.02 2.94 4.91
BCRS4x1 1.74 13.31 2.41

vectors and continuous storage for work vectors. In DD-TSpMV, BCRS1x4 or
BCRS4x1 would be the best.

3 Experimental results

We test on a machine that have 4-core 8-thread Intel Core i7 4770 3.4 GHz CPU,
8 MB L3 cache, and 16 GB memory. Fedora 20 OS and Intel C/C++ compiler
15.0.0 are used. Compiler options -O3, -xCORE-AVX2, -openmp, and -fp-model
precise are used. Our code is written in C and used AVX2 intrinsic instructions.
OpenMP guided scheduling option and 4-thread multi-threading are used.

We used a band matrix with band width of 32 and a dimension N equal to
105. This matrix cannot be stored in L3 cache and does not need random access
of loading for x. Table 3 shows elapsed time of DD-SpMV and DD-TSpMV.

For DD-SpMV, BCRS4x1 performs the best and is 1.2 times faster than CRS.
“set” and “REDUCTION” largely affect the performance.

For DD-TSpMV, BCRS4x1 with column-wise multi-threading performs the
best and is 1.6 times faster than CRS with row-wise multi-threading. The elapsed
times of DD-TSpMV in BCRS1x4 with row-wise and column-wise multi-threading
are about 1.5 and 1.4 times slower than those of DD-SpMV, respectively. The
best computation method of DD-TSpMV is BCRS4x1 with column-wise multi-
threading. Column-wise multi-threading is only effective for DD-TSpMV in BCRS4x1
because of fraction processing by thread partitioning.

Figure 1 shows the time ratio of BCRS4x1 compared to CRS of 100 sparse
matrices, which were taken from the University of Florida Sparse Matrix Col-
lection (http://www.cise.uhl.edu/research/sparse/matrices/).

In many cases, BCRS4x1 is faster than CRS using AVX2. The time ratio of
DD-SpMV in CRS using AVX2 are 0.06 - 1.34 with an average of 0.38 compared

SIMD Parallel SpMV and TSpMV in DD Precision 7

Fig. 1. Time ratio of BCRS4x1 compared with CRS [ms] (left:DD-SpMV, right:DD-
TSpMV). The comp. ratio means the amount of operations in BCRS4x1 compared to
CRS.

with CRS without SIMD. The time ratio of DD-SpMV in BCRS4x1 are 0.09 -
1.96 with an average of 0.43 compared with CRS using AVX2.

The time ratio of DD-TSpMV in CRS using AVX2 are 0.06 - 1.14 with an
average of 0.34 compared with CRS without SIMD. The time of DD-TSpMV in
BCRS4x1 using AVX2 are 0.08 - 1.07 with an average of 0.38 compared with
CRS using AVX2.

There is the correlation between the effect of AVX2 in CRS and that in
BCRS4x1. The correletion coefficient of DD-SpMV is 0.81, and that of DD-
TSpMV is 0.65. When SIMD acceleration is not effective, BCRS4x1 may be-
come worse. When the effect of SIMD-ization is low, nnz / row is low, or the
computation ratio is more than 2.7.

For example, the time ratio of “cell2” in BCRS4x1 using AVX2 is 1.96 times
slower than that in CRS using AVX2. It has different placement of the non-zero
elements in each row, nnz / row is 5, and the computation ratio is 1.9.

4 Conclusion

In this paper, we compared some storage formats of DD-SpMV and transposed
DD-SpMV (DD-TSpMV) for AVX2. We analyzed the optimal storage formant
to eliminate performance degradation factors in CRS.

In CRS, three performance degradation factors occur: non-continuous cal-
culation, non-continuous memory access, and summation of four DD variables
in two SIMD registers. BCRS4x1 is suitable for AVX2, because block size fits
the SIMD register’s length and eliminates degradation factors in CRS. However,

8 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

BCRS4x1 requires at most four times the amount of operations and data as
CRS.

In DD-TSpMV using AVX2, CRS has non-continuous access of y, the summa-
tion of each variable of SIMD register (REDUCTION), and “FRACTION PROCESSING”.
BCRS1x4 can eliminate these problems. However, DD-TSpMV in multi-threading
needs the number of thread work vectors and their summation.

One of the improvements is column-wise multi-threading, but thread-partitioning
is difficult for row-wise access storage format. It is easy to implement column-
wise multi-threading of BCRS4x1. It can factor out the “REDUCTION” to the
storage and summation of four work vectors.

We concluded that there are two good conditions of implementation for
AVX2. The first is fitting block size for the SIMD register’s length. The sec-
ond is making column-wise access blocking, which can access memory smoothly
and is suitable for column-wise multi-threading for DD-TSpMV. A row-wise ac-
cess storage format is not suitable for column-wise multi-threading because of
thread-partitioning.

From the experimental results, the effect of BCRS4x1 is generally good. There
is the correlation between the effect of AVX2 in CRS and that in BCRS4x1.
When the effect of SIMD-ization is low, nnz / row is small, or the computation
ratio is more than 2.7.

In the future, we will apply our technique for other SIMD lengths and multi-
core systems. The column-wise multi-threading in the BCRS format needs only
the length of SIMD’s register work vectors, i.e., it can be expected to speed up
the performance on the more multi-core systems.

5 Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 25330144. The
authors would like to thank the reviewers for their helpful comments.

References

1. Kouya Tomonori: A Highly Efficient Implementation of Multiple Precision Sparse
Matrix-Vector Multiplication and Its Application to Product-type Krylov Subspace
Methods, IJNMA, Vol. 7, Issue 2, pp. 107-119, 2012.

2. Bailey, D ,H.: High-Precision Floating-Point Arithmetic in Scientific Computation,
computing in Science and Engineering, pp. 54-61 (2005).

3. Intel: Intrinsics Guide,
http://software.intel.com/en-us/articles/intel-intrinsics-guide

4. Hishinuma, T., Fujii, A., Tanaka, T., Hasegawa, H.: AVX acceleration of DD arith-
metic between a sparse matrix and vector, LNCS 8384, pp. 622-631, Springer,
PPAM 2013, Part 1, Warsaw, Poland (2013).

5. Hishinuma, T., Fujii, A., Tanaka, T., Hasegawa, H.: AVX2 Acceleration of Double
Precision Sparse Matrix in BCRS Format and DD Vector Product, ACS, Vol.7,
No.4, pp.25-33 (2014) (in a Japanese journal).

6. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, SIAM pp. 57-65 (1994).

