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Abstract. In this paper, we present an algorithm for the singular value
decomposition (SVD) of a bidiagonal matrix by means of the eigenpairs
of an associated symmetric tridiagonal matrix. The algorithm is par-
ticularly suited for the computation of a subset of singular values and
corresponding vectors. We focus on a sequential implementation, discuss
special cases and other issues. We use a large set of bidiagonal matrices
to assess the accuracy of the implementation and to identify potential
shortcomings. We show that the algorithm can be up to three orders
of magnitude faster than existing algorithms, which are limited to the
computation of a full SVD.

1 Introduction

It is well known that the singular value decomposition (SVD) of a matrix A ∈
Rm×n, namely A = USV T , with left singular vectors U = [u1, u2, . . . un], right
singular vectors V = [v1, v2, . . . vn], and singular values S = diag(s1, s2, . . . sn),
s1 ≥ s2 ≥ . . . sn ≥ 0, can be obtained through the eigenpairs (λ, x) of the ma-
trices Cn×n = ATA and Cm×m = AAT . However, if A is square and orthogonal
Cn×n and Cm×m are both the identity and provide little information about the
singular vectors of A, which are not unique: A = (AV )IV T is the SVD of A
for any orthogonal matrix V . A potential difficulty for some algorithms (e.g. the
one presented in this paper) is large clusters of close singular values, as this may
have an impact on the orthogonality of the computed singular vectors.

Alternatively, the SVD can be obtained through the augmented matrix [1]

C =

[
0 A
AT 0

]
= J

[
−S 0
0 S

]
JT , J =

[
U U
−V V

]
/
√

2, (1)

such that the eigenvalues of C are ±s and its eigenvectors are mapped into the
singular vectors of A (scaled by

√
2) in a very structured manner.

In practical calculations, the SVD of a full matrix A involves the reduction
of A to bidiagonal form B through orthogonal transformations, i.e. A = ÛBV̂ T .
The singular values are thus preserved; the singular vectors of B need to be back
transformed into those of A.

If B is an upper bidiagonal matrix with (a1, a2, . . . an) on the main diagonal
and (b1, b2, . . . bn−1) on the off diagonal, we can replace A with B in (1) to obtain
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Table 1. LAPACK’s (bidiagonal, BD) SVD and (tridiagonal, ST) eigensolvers.

routine usage algorithm

BDSQR all s and (opt.) u and/or v implicit QL or QR
BDSDC all s and (opt.) u and v divide-and-conquer
STEQR all λ’s and (opt.) x implicit QL or QR
STEVX selected λ’s and (opt.) x bisection & inverse iteration
STEDC all λ’s and (opt.) x divide-and-conquer
STEMR selected λ’s and (opt.) x MRRR

C = P TGK PT , where TGK is the Golub-Kahan symmetric tridiagonal matrix,

TGK = tridiag

 a1 b1 a2 b2 . . . bn−1 an
0 0 0 0 . . . 0 0
a1 b1 a2 b2 . . . bn−1 an

 , (2)

and the perfect shuffle P = [en+1, e1, en+2, e2, en+3, . . . e2n], were the e’s are the
columns of the identity matrix of dimension 2n. Then, if the eigenpairs of TGK

are (±s, z), with ‖z‖ = 1, and from (1), we obtain z = P (uT ,±vT )/
√

2 [6]. Thus,
we can extract the SVD of B from the eigendecomposition of TGK .

Table 1 lists the current LAPACK subroutines intended for the computation
of the SVD of bidiagonal matrices, and eigenvalues and eigenvectors of tridiag-
onal matrices. The tradeoffs (performance, accuracy) of these eigensolvers have
been thoroughly examined in [3]. We are interested in how the symmetric tridi-
agonal (ST) subroutines could be applied to (2), specially for the computation of
subsets of eigenpairs, which in turn could reduce the computational costs when
a full SVD is not needed (or for the computations of subsets in parallel). While
STEDC could be potentially redesigned to compute a subset of eigenvectors, sav-
ing some work but only at the top level of recursion of the divide-and-conquer
algorithm, STEVX and STEMR offer more straighforward alternatives. STEVX per-
forms bisection to find selected eigenvalues followed by inverse iteration to find
their eigenvectors, for an O(n) cost per eigenpair. STEVX can occasionally fail to
provide orthogonal eigenvectors when the eigenvalues are too closely clustered.
In contrast, STEMR uses a much more sophisticated algorithm called MRRR [4, 5]
to guarantee orthogonality. An improved version of the MRRR algorithm tar-
geting TGK in order to compute the SVD has been proposed in [6]; however, our
experiments with an implementation given in [6] produced vectors with inade-
quate level of orthogonality, for relatively simple matrices. Therefore, we have
decided to adopt STEVX for computing eigenvalues and eigenvectors of (2), even
though it has known failure modes that we discuss later.

The main contribution of this paper is to discuss an implementation of an
algorithm for the SVD of a bidiagonal matrix obtained from eigenpairs of a
tridiagonal matrix TGK . This implementation is called BDSVDX, introduced in
LAPACK 3.6.0. While the associated formulation is not necessarily new, as men-
tioned above, its actual implementation requires care in order to deal correctly
with multiple or tightly clustered singular values, or some cases of splitting. To
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the best of our knowledge, no such implementation has been done and exhaus-
tively tested. In concert with BDSVDX we have also developed GESVDX, which
takes a general matrix A, reduces it to bidiagonal form B, invokes BDSVDX, and
then maps the output of BDSVDX into the SVD of A. In LAPACK, the current
counterparts of GESVDX are GESVD and GESDD, which are based on the BD subrou-
tines listed in Table 1 and can only compute all singular values (and optionally
singular vectors). This can be much more expensive if only a few singular values
and vectors are desired.

The rest of the paper is organized as follows. First, we discuss how singular
values are mapped into the eigenvalue spectrum. Then, we discuss special cases,
the criterion for splitting a bidiagonal matrix, and other implementation details.
Next, we show the results of our tests with BDSVDX using a large set of bidiagonal
matrices, to assess both accuracy and computational performance. Finally, we
discuss limitations and opportunities for future work.

2 Mapping singular values into eigenvalues

Similarly to BDSQR and BDSDC, BDSVDX allows the computation of singular val-
ues only or singular values and the corresponding singular vectors. Borrowing
features from STEVX, BDSVDX can be used in three modes, through a character
variable RANGE. If RANGE=“A”, all singular values will be found: BDSVDX will com-
pute the smallest (negative or zero) n eigenvalues of the corresponding TGK . If
RANGE=“V”, all singular values in the half-open interval (VL,VU] will be found:
BDSVDX will compute the eigenvalues of the corresponding TGK in the interval
(-VU,-VL]. If RANGE=“I”, the IL-th through IU-th singular values will be found:
the indices IL and IU are mapped into values (similar to VL and VU) by apply-
ing bisection to TGK . VL, VU, IL and IU are arguments of BDSVDX (which are
mapped into similar arguments for STEVX).

For a bidiagonal matrix B of dimension n, if singular vectors are requested,
BDSVDX returns an array Z of dimension 2n × p, where p ≤ n is a function
of RANGE. Each column of Z will contain (uTi , v

T
i )T corresponding to singular

value si, i.e. (using Matlab notation) Z = [ U ; V ]. STEVX returns eigenvalues
(and corresponding vectors) in ascending order, so we target the negative part
of the eigenvalue spectrum (i.e. −S) in (1). Therefore, the absolute values of the
returned eigenvalues give us the singular values in the desired order, s1 ≥ s2 ≥
. . . sn ≥ 0. We only need to change the signs of the entries in the eigenvectors
that are reloaded to V . We note that BDSVDX inherits some shortcomings from
STEVX: in extreme situations bisection may fail to converge, or not all eigenvalues
with indices IL:IU can be found, or inverse iteration fails to converge after the
allowed number of iterations is reached.

3 Splitting: special cases

The criterion for splitting in BDSVDX is the same that is used in STEQR and is
discussed in [7]. We first form the matrix TGK and check for splitting in two
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phases, starting with the off diagonal entries of TGK with even indices (i.e.
the b’s). If, for a given i, bi = 0 (or it is tiny enough to be set to zero) the
matrix B splits and the SVD for each resulting (square) submatrix of B can
be obtained independently. This effect is propagated into the associated TGK ,
i.e. the eigenvalues and eigenvectors of each submatrix of TGK can be obtained
independently. We then check the off diagonal entries of TGK with odd indices
(i.e. the a’s). If, for a given j, aj = 0 (or tiny enough), we end up with rectangular
bidiagonal matrices, which do not have equal numbers of left and right singular
vectors. This complicates our simple approach for extracting singular vectors of
B from eigenvectors of TGK . The problem can be reduced to one of the three
special cases illustrated below with small matrices.

Zero in the interior. If n = 5 and a3 = 0, we have the following SVD:

B = bidiag

(
b1 b2 b3 b4

a1 a2 0 a4 a5

)
=

[
U1

U2

] [
S1

S2

] [
V T
1

V T
2

]
,

where U1 and V2 are 2-by-2, U2 and V1 are 3-by-3, S1 is 2-by-3 (its third column
contains only zeros), and S2 is 3-by-2 (its third row contains only zeros). If we

construct T
(1)
GK and T

(2)
GK matrices as

T
(1)
GK = tridiag

 a1 b1 a2 b2
0 0 0 0 0
a1 b1 a2 b2

 , T
(2)
GK = tridiag

 b3 a4 b4 a5
0 0 0 0 0
b3 a4 b4 a5

 ,

then the first three columns of their respective eigenvector matrices are

Z
(1)
5×3 =


v
(1)
1,1 v

(1)
1,2 v

(1)
1,3

u
(1)
1,1 u

(1)
1,2 0

v
(1)
2,1 v

(1)
2,2 v

(1)
2,3

u
(1)
2,1 u

(1)
2,2 0

v
(1)
3,1 v

(1)
3,2 v

(1)
3,3

D−1, Z
(2)
5×3 =


u
(2)
1,1 u

(2)
1,2 u

(2)
1,3

v
(2)
1,1 v

(2)
1,2 0

u
(2)
2,1 u

(2)
2,2 u

(2)
2,3

v
(2)
2,1 v

(2)
2,2 0

u
(2)
3,1 u

(2)
3,2 u

(2)
3,3

D−1

where Z
(1)
5×3 and Z

(2)
5×3 show how the entries of the eigenvectors corresponding to

the three smallest (negative) eigenvalues of T
(1)
GK , λ

(1)
1 < λ

(1)
2 < λ

(1)
3 , and T

(2)
GK ,

λ
(2)
1 < λ

(2)
2 < λ

(2)
3 relate to the entries of U1, U2, V1 and V2, where v

(1)
ij are the

entries of V1 and so on. Note that the left and right singular vectors corresponding
to s3 are in different matrices, with D = diag(

√
2,
√

2, 1). (The array Z returned

by BDSVDX would be, in Matlab notation, Z = [ Z
(1a)
5×2 Z

(1b)
5×3; 0 Z

(2)
5×3 ], where

Z
(1a)
5×2 contains the first two columns of Z

(1)
5×3, while Z

(1b)
5×3 has zeros in its two

first columns and the last column of Z
(1)
5×3 in its last column.)

Zero at the top. If n = 4 and a1 = 0, we have the following SVD:

B = bidiag

(
b1 b2 b3

0 a2 a3 a4

)
=
[
U
] [0

S

] [
1
V T

]
,
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Table 2. Relation between the eigenvectors of TGK and the entries of U and V for a
zero at the top or bottom of B.

zero at the top zero at the bottom

Z
(1)
8×5 =

[
1

Z
(1)
7×4

]
(D(1))−1 Z

(2)
8×5 =

[
Z

(2)
7×4

1

]
(D(2))−1

D(1) = diag(1,
√
2,
√
2,
√
2, 1) D(2) = diag(

√
2,
√
2,
√
2, 1, 1)

columns of Z
(1)
7×4: columns of Z

(2)
7×4:

(u1,1 v1,1 u2,1 v2,1 u3,1 v3,1 u4,1)
T

(u1,2 v1,2 u2,2 v2,2 u3,2 v3,2 u4,2)
T

(u1,3 v1,3 u2,3 v2,3 u3,3 v3,3 u4,3)
T

(u1,4 0 u2,4 0 u3,4 0 u4,4)
T

(v1,1 u1,1 v2,1 u2,1 v3,1 u3,1 v4,1)
T

(v1,2 u1,2 v2,2 u2,2 v3,2 u3,2 v4,2)
T

(v1,3 u1,3 v2,3 u2,3 v3,3 u3,3 v4,3)
T

(v1,4 0 v2,4 0 v3,4 0 v4,4)
T

where U is 4-by-4, S is 3-by-3, and V is 3-by-3. If we construct a TGK from
B, its first row and column will be zero, and the entries of the eigenvectors
corresponding to the five smallest eigenvalues of TGK (again, related explicitly
to singular values of B) relate to the entries of U and V as shown in Table
2. (The array Z returned by BDSVDX would be formed by taking the last four

columns of Z
(1)
8×5; its last column is concatenated with the first column of Z

(1)
8×5.)

Zero at the bottom. If n = 4 and a4 = 0, we have the following SVD:

B = bidiag

(
b1 b2 b3

a1 a2 a3 0

)
=

[
U

1

] [
S

0

] [
V T
]
,

where U is 3-by-3, S is 3-by-3, and V is 4-by-4. If we construct a TGK from B, its
last row and column will be zero, the entries of the eigenvectors corresponding to
the five smallest eigenvalues of TGK (again, related explicitly to singular values
of B) relate to the entries of U and V as shown in Table 2. (The array Z returned

by BDSVDX would be formed by taking the first four columns of Z
(2)
8×5; its last

column is concatenated with the last column of Z
(2)
8×5.)

4 Reorthogonalization of vectors

As discussed earlier, zi = P (uTi ,−vTi )T /
√

2 (i ≤ 1 ≤ n). We could simply create
ûi with the even entries of zi and v̂i with the odd entries of zi and multiply those
vectors by

√
2 in order to obtain ui and vi. However, in our implementation we

explicitly normalize ûi and v̂i. This allows us to check how far the norms of ûi and
v̂i are from 1√

2
, which may be the case if zi is associated with a small λ. Then, if

needed, we apply a Gram-Schmidt reorthogonalization to ûi and v̂i. Our test for
triggering a reorthogonalization is based on |‖û‖ − 1√

2
| ≥ tol (similarly for v̂),

tol =
√
ε, where ε is the machine precision. However, we have identified matrices

for which this test is not sufficient, which suggests the need for a strategy that
takes into account the separation of λ’s. This is the case, for example, of the
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bidiagonal defined as ai = 10−(2i−1), i = 1, 2, . . . 8, bi = 10−(2i−2), i = 1, 2, . . . 7,
for which s1 ≈ 1.005, s7 ≈ 10−12 and s8 ≈ 10−22. The eigenvectors of the
corresponding TGK associated with eigenvalues−s7 and−s8 are not well defined,
resulting in singular vectors that are not orthogonal to work precision.

5 Numerical experiments

We have used a large set of bidiagonal matrices to test BDSVDX, on a typical
Intel-based computer, in double and single precisions, using different compilers.
Here we report results in double precision only, with the gnu compiler. Most of
the test matrices in our testbed are derived from symmetric tridiagonal matrices
described in [2] (also used in [3]). In this case, we factor T−νI = LLT (Cholesky)
for a proper value of ν (obtained from the Gerschgorin bounds of T ), then set
B = LT . The testbed also includes bidiagonals generated with random entries.

To test accuracy, we compute resid = ‖UTBV −S‖/(‖B‖×n× ε), orthU =
‖I − UTU‖/(n × ε), and orthV = ‖I − V TV ‖/(n × ε). To test RANGE=“I” or
RANGE=“V” for a given B, we build the corresponding TGK prior to invoking
BDSVDX and compute its eigenvalues using bisection. Then, for RANGE=“V” we
generate nV pairs of random indices IL and IU, map those indices into the
eigenvalues of TGK , perturb the eigenvalues slightly to obtain corresponding
pairs VL and VU, and then invoke BDSVDX nV times. For RANGE=“I” we simply
generate nI pairs of random indices IL and IU, and then invoke BDSVDX nI times.

Fig. 1a shows the accuracy of BDSVDX, all singular values and vectors, for 200
bidiagonal matrices with dimensions ranging from 9 to 4006. Figs. 1b-1c show
the accuracy of BDSVDX for the same matrices of Fig. 1a, with nI = 10 (random)
pairs of IL, IU, and nV = 10 (random) pairs of VL, VU for each matrix. In the
figures, the matrices (y-axis) are ordered according to their condition numbers,
which range from 1.0 to > 10200. For convenience, we use floor and ceiling
functions to bound the results in the x-axis, setting its limits to 10−2 and 10+4.

As can be seen in Fig. 1a, the great majority of the results are adequately
below 1.0. We consider the outliers to be the ones above 100 and mark them with
an ellipsis. Matrix 26 is a bidiagonal matrix obtained from a tridiagonal matrix
with highly clustered eigenvalues. Its dimension is 1260, its condition number is
2.2668, and its 136 largest eigenvalues have 12 digits in common (its spectrum
contains other large clusters). Matrices 198-200 are more difficult: their entries
are taken randomly from the interval [2 ∗ log(ε),−2 ∗ log(ε)], therefore ranging
from ε−2 to ε2 (this is a notoriously hard case, borrowed from the LAPACK
testers), and their dimensions are 125, 250 and 500, respectively. For n = 500,
s1 = 1.47 × 10+31 and sn = 1.34 × 10−284 (as computed by BDSQR). For these
matrices, resid is O(10−8) but orthU and orthV are O(10+13). As expected, the
effect of large clusters of singular values of matrix 26 and the oddities of matrices
198-200, are propagated to Figs. 1b and 1c. Figure 1b contains additional out-
liers: case 398 corresponds to a bidiagonal similar to matrix 26 in Fig. 1a; cases
1551 and 1552 are related to a bidiagonal of dimension 1000, obtained from a
tridiagonal with one eigenvalue equal to 1.0 and all others equal to 1/

√
ε.
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Fig. 1. resid , orthU , orthV (x-axis, log scale) of BDSVDX for RANGE=“A”,“I” and“V”,
double precision. (1a) 200 matrices (y-axis), increasing condition numbers; (1b) nI = 10
for each matrix of RANGE=“A”; (1c) nV = 10 for each matrix of RANGE=“A”.

Finally, Fig. 2 compares the times taken by BDSQR, BDSDC and BDSVDX on
12 bidiagonals with dimensions ranging from 494 to 2003 (a sample of matrices
from Fig. 1a). For BDSVDX, we compute all singular values/vectors, the largest
20% and 10% singular values/vectors, and the largest 5 singular values/vectors.
For each matrix, the timings are normalized with respect to the time taken
by BDSQR (y-axis, log scale). As expected, BDSVDX is not competitive for all or
a relatively large set of singular values/vectors, the gains become apparent at
about 10%. In particular, BDSVDX is 3 orders of magnitude faster than BDSQR and
2 orders of magnitude faster than BDSDC for the computation of the largest 5
singular values and vectors of the largest matrix.

6 Conclusions

This paper presented an algorithm for the computation of the SVD of a bidiag-
onal matrix by means of the eigenpairs of an associated tridiagonal matrix. The
implementation, BDSVDX (included in the LAPACK 3.6.0 release), provides for
the computation of a subset of singular values/vectors, which is important for
many large dimensional problems that do not require the full set. Our experi-
ments revealed that this feature can lead to impressive gains in computing times,
when compared with existing implementations that are limited to the computa-
tion of the full SVD. The implementation discussed here offers opportunities for
parallelism, for example by assigning different subsets of values and vectors to
different processes.
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Fig. 2. Normalized times (y-axis, log scale) for BDSQR, BDSDC and BDSVDX on 12 bidiago-
nals whose dimensions range from 494 to 2003 (x-axis, increasing size), double precision.
BDSVDX: all, the largest 20% and 10%, and the largest 5 singular values/vectors. For
each matrix, the timings are normalized with respect to the time taken by BDSQR, which
is typically the slowest.

Numerical results on a large set of test matrices substantiated the accuracy of
the implementation; the exceptions are matrices with very large condition num-
bers or highly clustered singular values. Interestingly, we have verified (results
not shown) that the accuracy is not so much dependent on the condition number
of the singular vectors, κu,v = min( 1

mini gapi

1
s1
, 1ε ), gapi = minj 6=i |σi−σj |, as we

had originally thought. On the other hand, we have identified pathological cases
(typically very small singular values) for which the computed singular vectors
may not be orthogonal to work precision. A more robust strategy to cope with
such cases needs to be investigated; it will be a priority in our future work.
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