
A Parallel and Resilient Frontend for High

Performane Validation Suites

Julien Adam

1
, Mar Pérahe

2

1
Paratools SAS, Bruyères-le-Châtel, Frane

2
CEA, DAM, DIF, F-91297, Arpajon, Frane

Abstrat. In any well-strutured software projet, a neessary step on-

sists in validating results relatively to funtional expetations. However,

in the high-performane omputing (HPC) ontext, this proess an be-

ome umbersome due to spei� onstraints suh as salability and/or

spei� job launhers. In this paper we present an original validation

front-end taking advantage of HPC resoures for HPC workloads. By

adding an abstration level between users and the bath manager, our

tool JCHRONOSS, drastially redues test-suite running time, while tak-

ing advantage of distributed resoures available to HPC developers. We

will �rst introdue validation work-�ow hallenges before presenting the

arhiteture of our tool and its ontribution to HPC validation suites.

Eventually, we present results from real test-ases, demonstrating e�e-

tive speed-up up to 25x ompared to sequential validation time � paving

the way to more thorough validation of HPC appliations.

Key words:Validation, Test-Suite, HPC, Sheduling, Fault-tolerane,

Parallel, Software Quality

1 Introdution

In the onstantly evolving landsape of parallel superomputers, HPC applia-

tions must be updated to take advantage of the underlying arhitetures. In

suh a ontext, validating parallel software features an be a real hallenge.

Non-regression bases (NRB) an play an important role in suh transitional

proess, onstantly validating results relative to expetations � mathing eah

features with dediated tests. However, for larger projets, the growth of the

non-regression base an beome troublesome, partiularly if validation system is

not robust enough. A reent projet with very large non-regression bases took

up to several days to run and involved thousands of tests. In suh a ontext,

modi�ations ould take up to one week to be validated, making test results

more omplex to analyze and impating development reativity. Current test-

ing frameworks do not provide a salable way to meet the growing validation

demands of large sofware e�orts.

Our goal is to simplify the ontinuous validation of parallel HPC appliations,

allowing HPC developers to onstantly monitor their software quality in an ef-

�ient manner. In this paper, we present a highly modular testing framework,



alled JCHRONOSS, that provides a onvenient and onsistent abstration layer

between a parallel validation suite and a given bath-manager. This tool is in-

tended to be salable on most HPC arhiteture, with dynami sheduling and

resilient exeution. As we will show, JCHRONOSS has been built in a generi

manner, without onstraining the target exeution model in order to meet the

requirements of any developer, onveniently replaing the ommodity test-sripts

enountered in some projets. The purpose is to optimize the ontinuous inte-

gration proess by providing a quik and reliable feedbak on software quality

during the development proess. JCHRONOSS is built in the ontext of existing

integration testing utilities, thereby enhaning validation work-�ows in an HPC

ontext, while allowing the user to rely on standard omponents.

This paper is organized as follows: Setion 2 desribes related work, dis-

ussing the use and limitations of non-regression bases in HPC ontext. Se-

tion 3.1 shortly presents JCHRONOSS's arhiteture. Then, Setion 3 details

JCHRONOSS's ontributions to ontinuous integration in HPC ontext and

Setion 4 evaluates JCHRONOSS in di�erent on�gurations relatively to a real

use-ase. Finally, Setion 5 desribes open issues and future work.

2 Related Work

The main fous of JCHRONOSS is to run tests in an optimized way. This proess

involves two main omponents that we have to ompare with existing work: (1)

shedulers and (2) test-frameworks.

Shedulers. Resoure sheduling has been widely studied for years and a large

number of tools already overs the subjet partiularly in HPC ontext. For

example, a tool like YARN[8℄ from the Apahe Hadoop framework is a powerful

sheduler, able to distribute multiple appliations over thousands of resoures,

suh as those used for MapRedue[5℄ omputations. Borg[9℄ from Google an

distribute appliations over multiple lusters, eah omposed of thousands of

nodes, with a goal of supporting a huge number of requests per seond. In the

HPC ontext, job managers suh as SLURM[10℄ are deployed over a luster

to e�iently manage resoure alloation. Suh shedulers generally need to be

deployed at the system level in order to expose omputing resoures. On the

ontrary, JCHRONOSS is running in user spae, proessing a test-suite meta-

desription and generating alls to suh job-manager in a more e�ient manner.

Indeed, running a test-suite in parallel requires more than simply submitting

exeutions to an existing bath manager, as we will further detail.

Test Frameworks. As testing is a key proess to ensure software quality, there

are a wide range of tools and solutions. Most solutions are foused on ease

of use, espeially when dealing with automati generation and on�guration as-

pet. CMake[6℄ and Autotools[4℄ are two main projet builder, able to handle the

on�guration and generations of test suites in a onvenient way through maros.

Some ontinuous integration platform like Jenkins[3℄, Travis[2℄ or CruiseControl[1℄



are designed to reate integrated test environments gathering several key ompo-

nents in the same interfae (suh as version ontrol systems and tiket trakers)

However, these solutions were not developed for HPC, as they are not able to

onveniently express the exeution of their workload in parallel, this burden

being left to the end-user. Developers are then fored to develop their own val-

idation sript, tailored to a given test environment. JCHRONOSS proposes to

avoid this redundant e�ort thanks to a simple XML formatted input driving a

parallel exeution from user-de�ned templates (bath-manager agnosti), with-

out sari�ing portability. Our tool is not a job sheduler by itself, it is designed

to be run by a user to generate from an XML meta-model an optimized stream

of requests to an existing bath-manager (the one installed on the mahine).

3 Contribution

In this setion, we present the three main ontributions of our tool. First, we

detail JCHRONOSS's arhiteture and its main omponents. Then, we explain

how tests are sheduled over a superomputer. Eventually, we desribe the fault-

tolerane mehanism. These ontributions allow JCHRONOSS to use a surfae-

based sheduler with resilieny to run tests in parallel and optimize validation

time.

3.1 Global Model

JCHRONOSS is designed for ease of use and interoperability. It loads a standard

validated XML input and produes a standard JUnit formated output ompliant

with ommon ontinuous integration platforms. As depited in Figure 1, the

master-worker arhiteture is based on two independent layers doing mostly the

same proessing. In order to keep resoures as busy as possible, layers share the

same algorithm following a "greedy" approah. Jobs are sattered in sub-pools

assigned to workers.

master

P1 P2 P3 PN

Worker

P1

...

...

New context

Exec.

INPUT OUTPUT

P2

New context

Exec.

P3

New context

Exec.

PN

New context

Exec.

Worker Worker Worker

Fig. 1. Master/Worker Arhiteture

Workers are responsible for ex-

euting individual sub-pools. Sub-

pool resoures are subtrated from

a global resoure alloation ounter.

Then, when there are no resoures

left, the master stops reating workers.

Upon ompletion, results are merged

in a post-run list gathering ompleted

tests' results � proess repeated un-

til test-suite ompletion. The only dif-

ferene between master and worker is

their sope. The master is responsible

for the global validation system whereas a worker manages a subset of tests,

e�etively running them over the system.



3.2 Job Ordering

Making requests to the job manager is as important as the sheduling itself. In

the ontext of overloaded superomputers, the more requests are made by a user,

the harder it is for the job manager to satisfy them. Generally, alloation grants

are based on multiple riteria. This is why requesting 2 nodes twie is not always

equivalent to a 4 node request. Alloation rate depends on urrent luster load,

past requests, quotas, and the number of resoures. Given these onstraints,

the most basi test runner would make a request for individual tests. This an

seriously degrade user priority, making future alloation attempts longer.

JCHRONOSS o�ers a way to gather jobs depending on deterministi riteria,

suh as number of resoures. This way, if a test requests four nodes to run,

JCHRONOSS will attempt to reate a worker with multiple jobs requesting the

same number of nodes, alloating the node on�guration only one. This follows

a very simple priniple: if the alloation is reated aording to type and number

of required resoures, then jobs sharing similar requirements an be dependent on

the same alloation. By gathering jobs with the same requirements in the same

alloation, this poliy tries to limit the number of resoure requests, leading to

larger workers (more jobs per alloation) and lowering global alloation overhead.

However, as suh ontexts ask for more resoures, the bath-manager an be a

little longer to ful�ll the request. But, if the bath-manager does not penalize

alloation following a linear alloation time formula like f(x) = ax (whih is

generally the ase), this algorithm will always be preferable for this kind of

on�guration. This approah is less stressful, and best suited for homogeneous

validation suites. Indeed, with imbalaned job pools, one worker will have to

proess more tests than the others, eventually leading to a parallelism loss.

Another approah an be onsidered to take advantage of a higher level of

parallelism. Another solution onsists in running validation suite depending on

available resoures instead of test requirements. The strategy evenly divides re-

soures among workers. Then, jobs are sheduled using a two-dimensional heuris-

ti over both resoures and time, the purpose being to �ll eah parallel subset

as muh as possible. Jobs are �rst sorted by resoure requirements and then

by dereasing estimated time. Thanks to this ordering, larger jobs are shed-

uled �rst, using a lassial greedy sheduling heuristi. This way, JCHRONOSS

an guarantee an e�ient use of available resoures at any time. Ideally, e�-

ient sheduling requires a prior knowledge of individual test duration in order

to orretly apply the "surfae" sheduling heuristi. However, if not provided,

or at least bounded by individual job timeout, JCHRONOSS approximates job

duration as the mean of previous duration.

This algorithm is the most e�ient for non-homogeneous test-suites in terms

of job manager requests as it alloates large subset and tries to �ll them �

maximizing resoure e�ieny. However, if the bath-manager poliy is resoure-

based, alloating large bukets an lead to very long alloation time, leading to

poor performane. Nonetheless, we observed that in most ases, the best-�t

poliy is a good trade-o� between e�ieny and exeution time.



3.3 Fault Tolerane

Depending on ode overage, validation suites an take a lot of time, ranging

from a few minutes up to several days. However, HPC environments are not

fully reliable with, for example, failing nodes, bath-manager and timeouts �

possibly impating running jobs. JCHRONOSS has been designed to be fault

tolerant. It supposes that any layer an rash. If a worker is interrupted, the

master onsiders all jobs as not run and reshedules them, making our approah

ompletely resilient to failing workers. Indeed, a new worker will be reated

to replae the failing one and the tests will be resheduled. Therefore, losing a

worker has no e�et on validation's overage. The ase where the master instane

is interrupted is more problemati as job results are only merged at the end of

the test-suite. Consequently, a rash prior to this point would lead to a omplete

loss of master's state. In order to irumvent this limitation, we implemented

an asynhronous hek-pointing mehanism whih onsists in storing urrent job

states in a �le as the workers are running. Thanks to this approah, a validation

an be restarted from the last oherent hekpoint, even if the master instane

failed, providing a omplete fault-tolerane support.

Chekpoint Time. A hekpoint is initiated when the master expets a worker

to end to maximize the overlapping. It onsists in storing urrent jobs' state

and their on�guration. Workers do not need to be hekpointed, they will be

rereated upon restart, sheduling remaining jobs. Our bakup onsists of a

single JSON formatted �le stored in JCHRONOSS's build diretory, alongside

other temporary �les. JSON format is �exible and easy to manipulate inside

JCHRONOSS, however, for now, the JSON �le is not ompressed and an lead

to both IO and parsing overhead depending on validation suite size. We are

onsidering the use of a binary JSON (BSON) to optimize this proess.

Restart Time. After an interruption, JCHRONOSS an be restarted from the

bakup �le. To do so, urrent on�guration is ignored and previous one is

reloaded. Then, job manager's state is restored from the bakup JSON �le.

Finally, validation an restart seamlessly. In order to save disk spae, following

bakup �les replae previous ones. Therefore, the most reent bakup is always

kept and alling the same ommand line over again in ase of failure allows the

ompletion of an inomplete test-suite thanks to our fault-tolerane mehanism.

Overhead. We plan to make a deep evaluation of fault-tolerane mehanism

overhead. For now, our experiments show that it takes 1 seond per worker to

bak up 10,000 tests and the global overhead does not exeed 1.2%. Clearly, the

number of tests an be di�erent and the number of workers an notieably vary

depending on the user's on�guration. By trying to hekpoint only validation

state and not JCHRONOSS itself, we signi�antly derease implied bakup over-

head. It is important to say that the major part of this overhead is reovered by

workers instane urrently running. However, this mehanism an beome really

ostly with an important number of workers, this inreasing hekpoint time,

not ompletely reovered by shorter workers.



4 Experimental Results

JCHRONOSS has been developed for and is being used on a daily basis as

MPC[7℄ validation system to manage a test base of forty thousand jobs, test-

suite likely to be exeuted on several superomputers, involving di�erent en-

vironments for portability tests. JCHRONOSS's goal is to speedup validation

proesses without sari�ing their portability between mahines. In this pur-

pose, the important variability between HPC mahines had to be taken into

aount. Indeed, as aforementioned several parameters a�et sheduling suh as

urrent user priority and spei� lateny due to luster load. Moreover, as the

mahine load is highly variable, we annot predit alloation overhead. Then,

two suessive JCHRONOSS runs, with similar parameters might not lead to the

same result. We were areful to present tests with similar on�gurations while

mitigating these random e�ets. These benhmarks were performed on two dif-

ferent superomputers. First the Curie superomputer, operated in the TGCC ,

whih is heavily loaded by multiple users, leading to long waiting queues. The

bath manager, based on SLURM is on�gured with user priorities. Seond su-

peromputer is a 111 nodes × 8 ores prototype, with fewer users and a �exible

bath manager. Comparisons will be made between these two environments, re-

spetively with and without priority based algorithms applied at bath manager

level. The NRB used here is a suite of 39,366 jobs with �xed exeution times

to allow poliies omparison over multiple runs while minimizing measurement

noise. These on�gurations have been run with the same subset of available re-

soures, allowed to perform tests on 48 nodes. We ompare poliies in terms of

elapsed time on eah of these superomputer. These omparisons will be made

alongside CTest performane with the same set of tests. The Figure 2 depits

these results.

CTest Default Criteria Best �t

0

10

20

30

E

l

a

p

s

e

d

T

i

m

e

(

h

)

Curie luster

Prototype luster

Fig. 2. Poliies e�ieny omparison between two

superomputer job managers.

Complete validation

suites were run on eah of

these mahines with dif-

ferent poliies in order to

ompare bath manager

on�guration e�ets. The

�xed number of resoures

is set to 4. Vertial axis

represents the number of

hours elapsed in the run.

CTest results have been

run sequentially (test

-j4) to be able to om-

pare with JCHRONOSS.

Indeed, the -j option al-

lows tests to be run in

parallel without disrimi-

nation, impling job over-

submissions and ausing



the user to violate the QoS poliy and aount to be bloked if the value is too

high. Eah job keeps the same exeution time in eah exeution. We onsider

that mahine load variation did not impat test-suite duration between poliies,

Curie being loaded and our test luster almost empty. These results illustrate

the need to arefully hoose sheduling poliies aording to luster, alloation

overhead being highly depending on bath manager. Default sequential poliy

learly shows its limits, providing no performane gains on the test-luster and

leading to an important penalty on Curie. More importantly, alloation overhead

even led to poor performanes relatively to the aggregated referene. Default pol-

iy reated around 40,000 new alloation requests, eah of them assoiated with

a resoure alloation, explaining the overhead observed on the loaded luster.

This poliy roughly applies the same methodology than other test-runner tools,

as depited by the sequential CTest performane results.

Our riteria-based poliy shows a non-negligible time redution with a 2.5

speedup. Paking jobs relatively to resoures seems to be a good alternative to

sequential exeution. Indeed, onsidering of N jobs, this solution an save up to

N − 1 new alloations if they are all using the same number of resoures.

Eventually, best �t algorithm shows the best speed-up of 25, independently

from the underlying bath manager. The optimizations made by this poliy,

spreading jobs among resoures in order to save time have proven to be e�etive.

More importantly, this approah seems to be less sensitive to bath-manager

poliy, making it more suitable for portability. Best �t is then both the fastest

and the most portable poliy � reason why it is the default one in JCHRONOSS.

5 Future Work

Optimize time to result. Currently, all tests de�ned by the user must be per-

formed before publishing the results. Therefore, it an happen that the whole

test suite has to be ompleted before the user is able to onsult the results,

inluding intermediate ones. In order to make time to result shorter, a deamon

server, provided as a JCHRONOSS plugin and running globally on interative

nodes, ould interat diretly with worker instanes, periodially olleting job

results and making data aessible from a lient browser. To redue the number

of deamons, a single server would handle multiple JCHRONOSS instanes.

Beoming a omplete end-to-end validation tool. For now, existing validation

proesses would have to be rewritten in order to generate a suitable input for

JCHRONOSS. We suggest making our tool ompliant with upstream and down-

stream tools, avoiding test spei�ations rewriting. JCHRONOSS should inlude

a job generator module, whih ould take data from existing build systems like

CMake or Autotools. Dealing with the output, JCHRONOSS generates it in

standard JUnit XML format. However, some other formats ould be more suit-

able for post-proessing. A generi output generation module would bring more

�exibility to the end-user. Our idea is to gather in one single tool all valida-

tion steps from the build system to the result mining platform, leading to an

end-to-end validation tool.



6 Conlusion

JCHRONOSS is a parallel and resilient frontend for high-performane validation

suites that run distributed tests in parallel in order to redue time to result. Be-

yond just taking advantage of parallel omputing resoures, JCHRONOSS looks

for optimal trade-o�s between e�ieny and duration. Its multiple sheduling

poliies are suitable for most use ases, allowing JCHRONOSS to be an inno-

vative agile tool designed for HPC workloads. JCHRONOSS an be adapted

to various exeution environments and is ompatible with existing validation

tools suh as Jenkins and BuildBot. We demonstrated validation speedup up to

25× on an atual use ase of ≈ 40,000 tests, learly showing the advantage of

our approah. JCHRONOSS is then a onvenient building blok for developers

willing to apply ontinuous integration methods to their HPC projet without

developing their own launh sripts to speedup validation. As validation system

reativity is a ritial point, the important duration assoiated with large NRB

an be a possible explanation of why some projets are not validated regularly.

The purpose of our work is to make HPC projet validation suites more e�ient

in terms of both omputational osts and exeution time. Indeed, a faster valida-

tion system simplifying ontinuous testing opens the way for better programming

praties and transitively enhanes ode quality.

Referenes

1. Cruiseontrol website. http://ruiseontrol.soureforge.net/.

2. TravisCI website. https://travis-i.org/.

3. A. Berg. Jenkins Continuous Integration Cookbook. Pakt Publishing Ltd, 2012.

4. J. Calote. Autotools: A Pratitioner's Guide to GNU Autoonf, Automake, and

Libtool. No Starh Press, 2010.

5. J. Dean and S. Ghemawat. Mapredue: simpli�ed data proessing on large lusters.

Communiations of the ACM, 51(1):107�113, 2008.

6. B. Ho�man, D. Cole, and J. Vines. Software proess for rapid development of

hp software using make. In DoD High Performane Computing Modernization

Program Users Group Conferene (HPCMP-UGC), 2009, pages 378�382. IEEE,

2009.

7. M. Pérahe, H. Jourdren, and R. Namyst. Mp: A uni�ed parallel runtime for

lusters of numa mahines. In Euro-Par 2008�Parallel Proessing, pages 78�88.

Springer, 2008.

8. V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apahe hadoop yarn: Yet another

resoure negotiator. In Proeedings of the 4th annual Symposium on Cloud Com-

puting, page 5. ACM, 2013.

9. A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.

Large-sale luster management at google with borg. In Proeedings of the Tenth

European Conferene on Computer Systems, page 18. ACM, 2015.

10. A. Yoo, M. Jette, and M. Grondona. Slurm: Simple linux utility for resoure man-

agement. In D. Feitelson, L. Rudolph, and U. Shwiegelshohn, editors, Job Shedul-

ing Strategies for Parallel Proessing, volume 2862 of Leture Notes in Computer

Siene, pages 44�60. Springer Berlin Heidelberg, 2003.

http://cruisecontrol.sourceforge.net/
https://travis-ci.org/

	A Parallel and Resilient Frontend for High Performance Validation Suites
	Julien Adam , Marc Pérache

