
A Parallel and Resilient Frontend for High

Performan
e Validation Suites

Julien Adam

1
, Mar
 Péra
he

2

1
Paratools SAS, Bruyères-le-Châtel, Fran
e

2
CEA, DAM, DIF, F-91297, Arpajon, Fran
e

Abstra
t. In any well-stru
tured software proje
t, a ne
essary step 
on-

sists in validating results relatively to fun
tional expe
tations. However,

in the high-performan
e 
omputing (HPC) 
ontext, this pro
ess 
an be-


ome 
umbersome due to spe
i�
 
onstraints su
h as s
alability and/or

spe
i�
 job laun
hers. In this paper we present an original validation

front-end taking advantage of HPC resour
es for HPC workloads. By

adding an abstra
tion level between users and the bat
h manager, our

tool JCHRONOSS, drasti
ally redu
es test-suite running time, while tak-

ing advantage of distributed resour
es available to HPC developers. We

will �rst introdu
e validation work-�ow 
hallenges before presenting the

ar
hite
ture of our tool and its 
ontribution to HPC validation suites.

Eventually, we present results from real test-
ases, demonstrating e�e
-

tive speed-up up to 25x 
ompared to sequential validation time � paving

the way to more thorough validation of HPC appli
ations.

Key words:Validation, Test-Suite, HPC, S
heduling, Fault-toleran
e,

Parallel, Software Quality

1 Introdu
tion

In the 
onstantly evolving lands
ape of parallel super
omputers, HPC appli
a-

tions must be updated to take advantage of the underlying ar
hite
tures. In

su
h a 
ontext, validating parallel software features 
an be a real 
hallenge.

Non-regression bases (NRB) 
an play an important role in su
h transitional

pro
ess, 
onstantly validating results relative to expe
tations � mat
hing ea
h

features with dedi
ated tests. However, for larger proje
ts, the growth of the

non-regression base 
an be
ome troublesome, parti
ularly if validation system is

not robust enough. A re
ent proje
t with very large non-regression bases took

up to several days to run and involved thousands of tests. In su
h a 
ontext,

modi�
ations 
ould take up to one week to be validated, making test results

more 
omplex to analyze and impa
ting development rea
tivity. Current test-

ing frameworks do not provide a s
alable way to meet the growing validation

demands of large sofware e�orts.

Our goal is to simplify the 
ontinuous validation of parallel HPC appli
ations,

allowing HPC developers to 
onstantly monitor their software quality in an ef-

�
ient manner. In this paper, we present a highly modular testing framework,




alled JCHRONOSS, that provides a 
onvenient and 
onsistent abstra
tion layer

between a parallel validation suite and a given bat
h-manager. This tool is in-

tended to be s
alable on most HPC ar
hite
ture, with dynami
 s
heduling and

resilient exe
ution. As we will show, JCHRONOSS has been built in a generi


manner, without 
onstraining the target exe
ution model in order to meet the

requirements of any developer, 
onveniently repla
ing the 
ommodity test-s
ripts

en
ountered in some proje
ts. The purpose is to optimize the 
ontinuous inte-

gration pro
ess by providing a qui
k and reliable feedba
k on software quality

during the development pro
ess. JCHRONOSS is built in the 
ontext of existing

integration testing utilities, thereby enhan
ing validation work-�ows in an HPC


ontext, while allowing the user to rely on standard 
omponents.

This paper is organized as follows: Se
tion 2 des
ribes related work, dis-


ussing the use and limitations of non-regression bases in HPC 
ontext. Se
-

tion 3.1 shortly presents JCHRONOSS's ar
hite
ture. Then, Se
tion 3 details

JCHRONOSS's 
ontributions to 
ontinuous integration in HPC 
ontext and

Se
tion 4 evaluates JCHRONOSS in di�erent 
on�gurations relatively to a real

use-
ase. Finally, Se
tion 5 des
ribes open issues and future work.

2 Related Work

The main fo
us of JCHRONOSS is to run tests in an optimized way. This pro
ess

involves two main 
omponents that we have to 
ompare with existing work: (1)

s
hedulers and (2) test-frameworks.

S
hedulers. Resour
e s
heduling has been widely studied for years and a large

number of tools already 
overs the subje
t parti
ularly in HPC 
ontext. For

example, a tool like YARN[8℄ from the Apa
he Hadoop framework is a powerful

s
heduler, able to distribute multiple appli
ations over thousands of resour
es,

su
h as those used for MapRedu
e[5℄ 
omputations. Borg[9℄ from Google 
an

distribute appli
ations over multiple 
lusters, ea
h 
omposed of thousands of

nodes, with a goal of supporting a huge number of requests per se
ond. In the

HPC 
ontext, job managers su
h as SLURM[10℄ are deployed over a 
luster

to e�
iently manage resour
e allo
ation. Su
h s
hedulers generally need to be

deployed at the system level in order to expose 
omputing resour
es. On the


ontrary, JCHRONOSS is running in user spa
e, pro
essing a test-suite meta-

des
ription and generating 
alls to su
h job-manager in a more e�
ient manner.

Indeed, running a test-suite in parallel requires more than simply submitting

exe
utions to an existing bat
h manager, as we will further detail.

Test Frameworks. As testing is a key pro
ess to ensure software quality, there

are a wide range of tools and solutions. Most solutions are fo
used on ease

of use, espe
ially when dealing with automati
 generation and 
on�guration as-

pe
t. CMake[6℄ and Autotools[4℄ are two main proje
t builder, able to handle the


on�guration and generations of test suites in a 
onvenient way through ma
ros.

Some 
ontinuous integration platform like Jenkins[3℄, Travis[2℄ or CruiseControl[1℄



are designed to 
reate integrated test environments gathering several key 
ompo-

nents in the same interfa
e (su
h as version 
ontrol systems and ti
ket tra
kers)

However, these solutions were not developed for HPC, as they are not able to


onveniently express the exe
ution of their workload in parallel, this burden

being left to the end-user. Developers are then for
ed to develop their own val-

idation s
ript, tailored to a given test environment. JCHRONOSS proposes to

avoid this redundant e�ort thanks to a simple XML formatted input driving a

parallel exe
ution from user-de�ned templates (bat
h-manager agnosti
), with-

out sa
ri�
ing portability. Our tool is not a job s
heduler by itself, it is designed

to be run by a user to generate from an XML meta-model an optimized stream

of requests to an existing bat
h-manager (the one installed on the ma
hine).

3 Contribution

In this se
tion, we present the three main 
ontributions of our tool. First, we

detail JCHRONOSS's ar
hite
ture and its main 
omponents. Then, we explain

how tests are s
heduled over a super
omputer. Eventually, we des
ribe the fault-

toleran
e me
hanism. These 
ontributions allow JCHRONOSS to use a surfa
e-

based s
heduler with resilien
y to run tests in parallel and optimize validation

time.

3.1 Global Model

JCHRONOSS is designed for ease of use and interoperability. It loads a standard

validated XML input and produ
es a standard JUnit formated output 
ompliant

with 
ommon 
ontinuous integration platforms. As depi
ted in Figure 1, the

master-worker ar
hite
ture is based on two independent layers doing mostly the

same pro
essing. In order to keep resour
es as busy as possible, layers share the

same algorithm following a "greedy" approa
h. Jobs are s
attered in sub-pools

assigned to workers.

master

P1 P2 P3 PN

Worker

P1

...

...

New context

Exec.

INPUT OUTPUT

P2

New context

Exec.

P3

New context

Exec.

PN

New context

Exec.

Worker Worker Worker

Fig. 1. Master/Worker Ar
hite
ture

Workers are responsible for ex-

e
uting individual sub-pools. Sub-

pool resour
es are subtra
ted from

a global resour
e allo
ation 
ounter.

Then, when there are no resour
es

left, the master stops 
reating workers.

Upon 
ompletion, results are merged

in a post-run list gathering 
ompleted

tests' results � pro
ess repeated un-

til test-suite 
ompletion. The only dif-

feren
e between master and worker is

their s
ope. The master is responsible

for the global validation system whereas a worker manages a subset of tests,

e�e
tively running them over the system.



3.2 Job Ordering

Making requests to the job manager is as important as the s
heduling itself. In

the 
ontext of overloaded super
omputers, the more requests are made by a user,

the harder it is for the job manager to satisfy them. Generally, allo
ation grants

are based on multiple 
riteria. This is why requesting 2 nodes twi
e is not always

equivalent to a 4 node request. Allo
ation rate depends on 
urrent 
luster load,

past requests, quotas, and the number of resour
es. Given these 
onstraints,

the most basi
 test runner would make a request for individual tests. This 
an

seriously degrade user priority, making future allo
ation attempts longer.

JCHRONOSS o�ers a way to gather jobs depending on deterministi
 
riteria,

su
h as number of resour
es. This way, if a test requests four nodes to run,

JCHRONOSS will attempt to 
reate a worker with multiple jobs requesting the

same number of nodes, allo
ating the node 
on�guration only on
e. This follows

a very simple prin
iple: if the allo
ation is 
reated a

ording to type and number

of required resour
es, then jobs sharing similar requirements 
an be dependent on

the same allo
ation. By gathering jobs with the same requirements in the same

allo
ation, this poli
y tries to limit the number of resour
e requests, leading to

larger workers (more jobs per allo
ation) and lowering global allo
ation overhead.

However, as su
h 
ontexts ask for more resour
es, the bat
h-manager 
an be a

little longer to ful�ll the request. But, if the bat
h-manager does not penalize

allo
ation following a linear allo
ation time formula like f(x) = ax (whi
h is

generally the 
ase), this algorithm will always be preferable for this kind of


on�guration. This approa
h is less stressful, and best suited for homogeneous

validation suites. Indeed, with imbalan
ed job pools, one worker will have to

pro
ess more tests than the others, eventually leading to a parallelism loss.

Another approa
h 
an be 
onsidered to take advantage of a higher level of

parallelism. Another solution 
onsists in running validation suite depending on

available resour
es instead of test requirements. The strategy evenly divides re-

sour
es among workers. Then, jobs are s
heduled using a two-dimensional heuris-

ti
 over both resour
es and time, the purpose being to �ll ea
h parallel subset

as mu
h as possible. Jobs are �rst sorted by resour
e requirements and then

by de
reasing estimated time. Thanks to this ordering, larger jobs are s
hed-

uled �rst, using a 
lassi
al greedy s
heduling heuristi
. This way, JCHRONOSS


an guarantee an e�
ient use of available resour
es at any time. Ideally, e�-


ient s
heduling requires a prior knowledge of individual test duration in order

to 
orre
tly apply the "surfa
e" s
heduling heuristi
. However, if not provided,

or at least bounded by individual job timeout, JCHRONOSS approximates job

duration as the mean of previous duration.

This algorithm is the most e�
ient for non-homogeneous test-suites in terms

of job manager requests as it allo
ates large subset and tries to �ll them �

maximizing resour
e e�
ien
y. However, if the bat
h-manager poli
y is resour
e-

based, allo
ating large bu
kets 
an lead to very long allo
ation time, leading to

poor performan
e. Nonetheless, we observed that in most 
ases, the best-�t

poli
y is a good trade-o� between e�
ien
y and exe
ution time.



3.3 Fault Toleran
e

Depending on 
ode 
overage, validation suites 
an take a lot of time, ranging

from a few minutes up to several days. However, HPC environments are not

fully reliable with, for example, failing nodes, bat
h-manager and timeouts �

possibly impa
ting running jobs. JCHRONOSS has been designed to be fault

tolerant. It supposes that any layer 
an 
rash. If a worker is interrupted, the

master 
onsiders all jobs as not run and res
hedules them, making our approa
h


ompletely resilient to failing workers. Indeed, a new worker will be 
reated

to repla
e the failing one and the tests will be res
heduled. Therefore, losing a

worker has no e�e
t on validation's 
overage. The 
ase where the master instan
e

is interrupted is more problemati
 as job results are only merged at the end of

the test-suite. Consequently, a 
rash prior to this point would lead to a 
omplete

loss of master's state. In order to 
ir
umvent this limitation, we implemented

an asyn
hronous 
he
k-pointing me
hanism whi
h 
onsists in storing 
urrent job

states in a �le as the workers are running. Thanks to this approa
h, a validation


an be restarted from the last 
oherent 
he
kpoint, even if the master instan
e

failed, providing a 
omplete fault-toleran
e support.

Che
kpoint Time. A 
he
kpoint is initiated when the master expe
ts a worker

to end to maximize the overlapping. It 
onsists in storing 
urrent jobs' state

and their 
on�guration. Workers do not need to be 
he
kpointed, they will be

re
reated upon restart, s
heduling remaining jobs. Our ba
kup 
onsists of a

single JSON formatted �le stored in JCHRONOSS's build dire
tory, alongside

other temporary �les. JSON format is �exible and easy to manipulate inside

JCHRONOSS, however, for now, the JSON �le is not 
ompressed and 
an lead

to both IO and parsing overhead depending on validation suite size. We are


onsidering the use of a binary JSON (BSON) to optimize this pro
ess.

Restart Time. After an interruption, JCHRONOSS 
an be restarted from the

ba
kup �le. To do so, 
urrent 
on�guration is ignored and previous one is

reloaded. Then, job manager's state is restored from the ba
kup JSON �le.

Finally, validation 
an restart seamlessly. In order to save disk spa
e, following

ba
kup �les repla
e previous ones. Therefore, the most re
ent ba
kup is always

kept and 
alling the same 
ommand line over again in 
ase of failure allows the


ompletion of an in
omplete test-suite thanks to our fault-toleran
e me
hanism.

Overhead. We plan to make a deep evaluation of fault-toleran
e me
hanism

overhead. For now, our experiments show that it takes 1 se
ond per worker to

ba
k up 10,000 tests and the global overhead does not ex
eed 1.2%. Clearly, the

number of tests 
an be di�erent and the number of workers 
an noti
eably vary

depending on the user's 
on�guration. By trying to 
he
kpoint only validation

state and not JCHRONOSS itself, we signi�
antly de
rease implied ba
kup over-

head. It is important to say that the major part of this overhead is re
overed by

workers instan
e 
urrently running. However, this me
hanism 
an be
ome really


ostly with an important number of workers, this in
reasing 
he
kpoint time,

not 
ompletely re
overed by shorter workers.



4 Experimental Results

JCHRONOSS has been developed for and is being used on a daily basis as

MPC[7℄ validation system to manage a test base of forty thousand jobs, test-

suite likely to be exe
uted on several super
omputers, involving di�erent en-

vironments for portability tests. JCHRONOSS's goal is to speedup validation

pro
esses without sa
ri�
ing their portability between ma
hines. In this pur-

pose, the important variability between HPC ma
hines had to be taken into

a

ount. Indeed, as aforementioned several parameters a�e
t s
heduling su
h as


urrent user priority and spe
i�
 laten
y due to 
luster load. Moreover, as the

ma
hine load is highly variable, we 
annot predi
t allo
ation overhead. Then,

two su

essive JCHRONOSS runs, with similar parameters might not lead to the

same result. We were 
areful to present tests with similar 
on�gurations while

mitigating these random e�e
ts. These ben
hmarks were performed on two dif-

ferent super
omputers. First the Curie super
omputer, operated in the TGCC ,

whi
h is heavily loaded by multiple users, leading to long waiting queues. The

bat
h manager, based on SLURM is 
on�gured with user priorities. Se
ond su-

per
omputer is a 111 nodes × 8 
ores prototype, with fewer users and a �exible

bat
h manager. Comparisons will be made between these two environments, re-

spe
tively with and without priority based algorithms applied at bat
h manager

level. The NRB used here is a suite of 39,366 jobs with �xed exe
ution times

to allow poli
ies 
omparison over multiple runs while minimizing measurement

noise. These 
on�gurations have been run with the same subset of available re-

sour
es, allowed to perform tests on 48 nodes. We 
ompare poli
ies in terms of

elapsed time on ea
h of these super
omputer. These 
omparisons will be made

alongside CTest performan
e with the same set of tests. The Figure 2 depi
ts

these results.

CTest Default Criteria Best �t

0

10

20

30

E

l

a

p

s

e

d

T

i

m

e

(

h

)

Curie 
luster

Prototype 
luster

Fig. 2. Poli
ies e�
ien
y 
omparison between two

super
omputer job managers.

Complete validation

suites were run on ea
h of

these ma
hines with dif-

ferent poli
ies in order to


ompare bat
h manager


on�guration e�e
ts. The

�xed number of resour
es

is set to 4. Verti
al axis

represents the number of

hours elapsed in the run.

CTest results have been

run sequentially (
test

-j4) to be able to 
om-

pare with JCHRONOSS.

Indeed, the -j option al-

lows tests to be run in

parallel without dis
rimi-

nation, impling job over-

submissions and 
ausing



the user to violate the QoS poli
y and a

ount to be blo
ked if the value is too

high. Ea
h job keeps the same exe
ution time in ea
h exe
ution. We 
onsider

that ma
hine load variation did not impa
t test-suite duration between poli
ies,

Curie being loaded and our test 
luster almost empty. These results illustrate

the need to 
arefully 
hoose s
heduling poli
ies a

ording to 
luster, allo
ation

overhead being highly depending on bat
h manager. Default sequential poli
y


learly shows its limits, providing no performan
e gains on the test-
luster and

leading to an important penalty on Curie. More importantly, allo
ation overhead

even led to poor performan
es relatively to the aggregated referen
e. Default pol-

i
y 
reated around 40,000 new allo
ation requests, ea
h of them asso
iated with

a resour
e allo
ation, explaining the overhead observed on the loaded 
luster.

This poli
y roughly applies the same methodology than other test-runner tools,

as depi
ted by the sequential CTest performan
e results.

Our 
riteria-based poli
y shows a non-negligible time redu
tion with a 2.5

speedup. Pa
king jobs relatively to resour
es seems to be a good alternative to

sequential exe
ution. Indeed, 
onsidering of N jobs, this solution 
an save up to

N − 1 new allo
ations if they are all using the same number of resour
es.

Eventually, best �t algorithm shows the best speed-up of 25, independently

from the underlying bat
h manager. The optimizations made by this poli
y,

spreading jobs among resour
es in order to save time have proven to be e�e
tive.

More importantly, this approa
h seems to be less sensitive to bat
h-manager

poli
y, making it more suitable for portability. Best �t is then both the fastest

and the most portable poli
y � reason why it is the default one in JCHRONOSS.

5 Future Work

Optimize time to result. Currently, all tests de�ned by the user must be per-

formed before publishing the results. Therefore, it 
an happen that the whole

test suite has to be 
ompleted before the user is able to 
onsult the results,

in
luding intermediate ones. In order to make time to result shorter, a deamon

server, provided as a JCHRONOSS plugin and running globally on intera
tive

nodes, 
ould intera
t dire
tly with worker instan
es, periodi
ally 
olle
ting job

results and making data a

essible from a 
lient browser. To redu
e the number

of deamons, a single server would handle multiple JCHRONOSS instan
es.

Be
oming a 
omplete end-to-end validation tool. For now, existing validation

pro
esses would have to be rewritten in order to generate a suitable input for

JCHRONOSS. We suggest making our tool 
ompliant with upstream and down-

stream tools, avoiding test spe
i�
ations rewriting. JCHRONOSS should in
lude

a job generator module, whi
h 
ould take data from existing build systems like

CMake or Autotools. Dealing with the output, JCHRONOSS generates it in

standard JUnit XML format. However, some other formats 
ould be more suit-

able for post-pro
essing. A generi
 output generation module would bring more

�exibility to the end-user. Our idea is to gather in one single tool all valida-

tion steps from the build system to the result mining platform, leading to an

end-to-end validation tool.



6 Con
lusion

JCHRONOSS is a parallel and resilient frontend for high-performan
e validation

suites that run distributed tests in parallel in order to redu
e time to result. Be-

yond just taking advantage of parallel 
omputing resour
es, JCHRONOSS looks

for optimal trade-o�s between e�
ien
y and duration. Its multiple s
heduling

poli
ies are suitable for most use 
ases, allowing JCHRONOSS to be an inno-

vative agile tool designed for HPC workloads. JCHRONOSS 
an be adapted

to various exe
ution environments and is 
ompatible with existing validation

tools su
h as Jenkins and BuildBot. We demonstrated validation speedup up to

25× on an a
tual use 
ase of ≈ 40,000 tests, 
learly showing the advantage of

our approa
h. JCHRONOSS is then a 
onvenient building blo
k for developers

willing to apply 
ontinuous integration methods to their HPC proje
t without

developing their own laun
h s
ripts to speedup validation. As validation system

rea
tivity is a 
riti
al point, the important duration asso
iated with large NRB


an be a possible explanation of why some proje
ts are not validated regularly.

The purpose of our work is to make HPC proje
t validation suites more e�
ient

in terms of both 
omputational 
osts and exe
ution time. Indeed, a faster valida-

tion system simplifying 
ontinuous testing opens the way for better programming

pra
ti
es and transitively enhan
es 
ode quality.

Referen
es

1. Cruise
ontrol website. http://
ruise
ontrol.sour
eforge.net/.

2. TravisCI website. https://travis-
i.org/.

3. A. Berg. Jenkins Continuous Integration Cookbook. Pa
kt Publishing Ltd, 2012.

4. J. Cal
ote. Autotools: A Pra
titioner's Guide to GNU Auto
onf, Automake, and

Libtool. No Star
h Press, 2010.

5. J. Dean and S. Ghemawat. Mapredu
e: simpli�ed data pro
essing on large 
lusters.

Communi
ations of the ACM, 51(1):107�113, 2008.

6. B. Ho�man, D. Cole, and J. Vines. Software pro
ess for rapid development of

hp
 software using 
make. In DoD High Performan
e Computing Modernization

Program Users Group Conferen
e (HPCMP-UGC), 2009, pages 378�382. IEEE,

2009.

7. M. Péra
he, H. Jourdren, and R. Namyst. Mp
: A uni�ed parallel runtime for


lusters of numa ma
hines. In Euro-Par 2008�Parallel Pro
essing, pages 78�88.

Springer, 2008.

8. V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apa
he hadoop yarn: Yet another

resour
e negotiator. In Pro
eedings of the 4th annual Symposium on Cloud Com-

puting, page 5. ACM, 2013.

9. A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.

Large-s
ale 
luster management at google with borg. In Pro
eedings of the Tenth

European Conferen
e on Computer Systems, page 18. ACM, 2015.

10. A. Yoo, M. Jette, and M. Grondona. Slurm: Simple linux utility for resour
e man-

agement. In D. Feitelson, L. Rudolph, and U. S
hwiegelshohn, editors, Job S
hedul-

ing Strategies for Parallel Pro
essing, volume 2862 of Le
ture Notes in Computer

S
ien
e, pages 44�60. Springer Berlin Heidelberg, 2003.

http://cruisecontrol.sourceforge.net/
https://travis-ci.org/

	A Parallel and Resilient Frontend for High Performance Validation Suites
	Julien Adam , Marc Pérache

