A Parallel and Resilient Frontend for High
Performance Validation Suites

Julien Adam! , Marc Pérache?

! Paratools SAS, Bruyéres-le-Chatel, France
2 CEA, DAM, DIF, F-91297, Arpajon, France

Abstract. In any well-structured software project, a necessary step con-
sists in validating results relatively to functional expectations. However,
in the high-performance computing (HPC) context, this process can be-
come cumbersome due to specific constraints such as scalability and/or
specific job launchers. In this paper we present an original validation
front-end taking advantage of HPC resources for HPC workloads. By
adding an abstraction level between users and the batch manager, our
tool JCHRONOSS, drastically reduces test-suite running time, while tak-
ing advantage of distributed resources available to HPC developers. We
will first introduce validation work-flow challenges before presenting the
architecture of our tool and its contribution to HPC validation suites.
Eventually, we present results from real test-cases, demonstrating effec-
tive speed-up up to 25x compared to sequential validation time — paving
the way to more thorough validation of HPC applications.

Key words:Validation, Test-Suite, HPC, Scheduling, Fault-tolerance,
Parallel, Software Quality

1 Introduction

In the constantly evolving landscape of parallel supercomputers, HPC applica-
tions must be updated to take advantage of the underlying architectures. In
such a context, validating parallel software features can be a real challenge.
Non-regression bases (NRB) can play an important role in such transitional
process, constantly validating results relative to expectations — matching each
features with dedicated tests. However, for larger projects, the growth of the
non-regression base can become troublesome, particularly if validation system is
not robust enough. A recent project with very large non-regression bases took
up to several days to run and involved thousands of tests. In such a context,
modifications could take up to one week to be validated, making test results
more complex to analyze and impacting development reactivity. Current test-
ing frameworks do not provide a scalable way to meet the growing validation
demands of large sofware efforts.

Our goal is to simplify the continuous validation of parallel HPC applications,
allowing HPC developers to constantly monitor their software quality in an ef-
ficient manner. In this paper, we present a highly modular testing framework,

called JCHRONOSS, that provides a convenient and consistent abstraction layer
between a parallel validation suite and a given batch-manager. This tool is in-
tended to be scalable on most HPC architecture, with dynamic scheduling and
resilient execution. As we will show, JCHRONOSS has been built in a generic
manner, without constraining the target execution model in order to meet the
requirements of any developer, conveniently replacing the commodity test-scripts
encountered in some projects. The purpose is to optimize the continuous inte-
gration process by providing a quick and reliable feedback on software quality
during the development process. JCHRONOSS is built in the context of existing
integration testing utilities, thereby enhancing validation work-flows in an HPC
context, while allowing the user to rely on standard components.

This paper is organized as follows: Section [2] describes related work, dis-
cussing the use and limitations of non-regression bases in HPC context. Sec-
tion [B] shortly presents JCHRONOSS’s architecture. Then, Section [details
JCHRONOSS’s contributions to continuous integration in HPC context and
Section [evaluates JCHRONOSS in different configurations relatively to a real
use-case. Finally, Section [5] describes open issues and future work.

2 Related Work

The main focus of JCHRONOSS is to run tests in an optimized way. This process
involves two main components that we have to compare with existing work: (1)
schedulers and (2) test-frameworks.

Schedulers. Resource scheduling has been widely studied for years and a large
number of tools already covers the subject particularly in HPC context. For
example, a tool like YARNIg] from the Apache Hadoop framework is a powerful
scheduler, able to distribute multiple applications over thousands of resources,
such as those used for MapReduce[5] computations. Borg[9] from Google can
distribute applications over multiple clusters, each composed of thousands of
nodes, with a goal of supporting a huge number of requests per second. In the
HPC context, job managers such as SLURM|L0] are deployed over a cluster
to efficiently manage resource allocation. Such schedulers generally need to be
deployed at the system level in order to expose computing resources. On the
contrary, JCHRONOSS is running in user space, processing a test-suite meta-
description and generating calls to such job-manager in a more efficient manner.
Indeed, running a test-suite in parallel requires more than simply submitting
executions to an existing batch manager, as we will further detail.

Test Frameworks. As testing is a key process to ensure software quality, there
are a wide range of tools and solutions. Most solutions are focused on ease
of use, especially when dealing with automatic generation and configuration as-
pect. CMake[6] and Autotools[4] are two main project builder, able to handle the
configuration and generations of test suites in a convenient way through macros.
Some continuous integration platform like Jenkins[3], Travis[2] or CruiseControl[I]

are designed to create integrated test environments gathering several key compo-
nents in the same interface (such as version control systems and ticket trackers)
However, these solutions were not developed for HPC, as they are not able to
conveniently express the execution of their workload in parallel, this burden
being left to the end-user. Developers are then forced to develop their own val-
idation script, tailored to a given test environment. JCHRONOSS proposes to
avoid this redundant effort thanks to a simple XML formatted input driving a
parallel execution from user-defined templates (batch-manager agnostic), with-
out sacrificing portability. Our tool is not a job scheduler by itself, it is designed
to be run by a user to generate from an XML meta-model an optimized stream
of requests to an existing batch-manager (the one installed on the machine).

3 Contribution

In this section, we present the three main contributions of our tool. First, we
detail JCHRONOSS’s architecture and its main components. Then, we explain
how tests are scheduled over a supercomputer. Eventually, we describe the fault-
tolerance mechanism. These contributions allow JCHRONOSS to use a surface-
based scheduler with resiliency to run tests in parallel and optimize validation
time.

3.1 Global Model

JCHRONOSS is designed for ease of use and interoperability. It loads a standard
validated XML input and produces a standard JUnit formated output compliant
with common continuous integration platforms. As depicted in Figure [the
master-worker architecture is based on two independent layers doing mostly the
same processing. In order to keep resources as busy as possible, layers share the
same algorithm following a "greedy" approach. Jobs are scattered in sub-pools
assigned to workers.

Workers are responsible for ex-
ecuting individual sub-pools. Sub- master
pool resources are subt%vacted from mm<[‘ P1 ‘ PZ ‘ Pj’ ‘ ‘ PN‘ ouTeUT
a global resource allocation counter. 7 I X =

Then, when there are no resources % % % \%\
left, the master StOpS Creating WOrkerS. iNew contexy HNew contert HNEW con\‘ext i iNew context |
Upon completion, results are merged Worker |11 | Worker Worker Worker ||
in a post-run list gathering completed | ‘ Pl ‘ PZ ‘ P:” ‘ PN

I} I}] I}

tests’ results — process repeated un-
til test-suite completion. The only dif-
ference between master and worker is Fig. 1. Master /Worker Architecture
their scope. The master is responsible

for the global validation system whereas a worker manages a subset of tests,
effectively running them over the system.

Y M \ \
Exec. Exec. Exec. Exec.

3.2 Job Ordering

Making requests to the job manager is as important as the scheduling itself. In
the context of overloaded supercomputers, the more requests are made by a user,
the harder it is for the job manager to satisfy them. Generally, allocation grants
are based on multiple criteria. This is why requesting 2 nodes twice is not always
equivalent to a 4 node request. Allocation rate depends on current cluster load,
past requests, quotas, and the number of resources. Given these constraints,
the most basic test runner would make a request for individual tests. This can
seriously degrade user priority, making future allocation attempts longer.

JCHRONOSS offers a way to gather jobs depending on deterministic criteria,
such as number of resources. This way, if a test requests four nodes to run,
JCHRONOSS will attempt to create a worker with multiple jobs requesting the
same number of nodes, allocating the node configuration only once. This follows
a very simple principle: if the allocation is created according to type and number
of required resources, then jobs sharing similar requirements can be dependent on
the same allocation. By gathering jobs with the same requirements in the same
allocation, this policy tries to limit the number of resource requests, leading to
larger workers (more jobs per allocation) and lowering global allocation overhead.
However, as such contexts ask for more resources, the batch-manager can be a
little longer to fulfill the request. But, if the batch-manager does not penalize
allocation following a linear allocation time formula like f(z) = axz (which is
generally the case), this algorithm will always be preferable for this kind of
configuration. This approach is less stressful, and best suited for homogeneous
validation suites. Indeed, with imbalanced job pools, one worker will have to
process more tests than the others, eventually leading to a parallelism loss.

Another approach can be considered to take advantage of a higher level of
parallelism. Another solution consists in running validation suite depending on
available resources instead of test requirements. The strategy evenly divides re-
sources among workers. Then, jobs are scheduled using a two-dimensional heuris-
tic over both resources and time, the purpose being to fill each parallel subset
as much as possible. Jobs are first sorted by resource requirements and then
by decreasing estimated time. Thanks to this ordering, larger jobs are sched-
uled first, using a classical greedy scheduling heuristic. This way, JCHRONOSS
can guarantee an efficient use of available resources at any time. Ideally, effi-
cient scheduling requires a prior knowledge of individual test duration in order
to correctly apply the "surface" scheduling heuristic. However, if not provided,
or at least bounded by individual job timeout, JCHRONOSS approximates job
duration as the mean of previous duration.

This algorithm is the most efficient for non-homogeneous test-suites in terms
of job manager requests as it allocates large subset and tries to fill them —
maximizing resource efficiency. However, if the batch-manager policy is resource-
based, allocating large buckets can lead to very long allocation time, leading to
poor performance. Nonetheless, we observed that in most cases, the best-fit
policy is a good trade-off between efficiency and execution time.

3.3 Fault Tolerance

Depending on code coverage, validation suites can take a lot of time, ranging
from a few minutes up to several days. However, HPC environments are not
fully reliable with, for example, failing nodes, batch-manager and timeouts —
possibly impacting running jobs. JCHRONOSS has been designed to be fault
tolerant. It supposes that any layer can crash. If a worker is interrupted, the
master considers all jobs as not run and reschedules them, making our approach
completely resilient to failing workers. Indeed, a new worker will be created
to replace the failing one and the tests will be rescheduled. Therefore, losing a
worker has no effect on validation’s coverage. The case where the master instance
is interrupted is more problematic as job results are only merged at the end of
the test-suite. Consequently, a crash prior to this point would lead to a complete
loss of master’s state. In order to circumvent this limitation, we implemented
an asynchronous check-pointing mechanism which consists in storing current job
states in a file as the workers are running. Thanks to this approach, a validation
can be restarted from the last coherent checkpoint, even if the master instance
failed, providing a complete fault-tolerance support.

Checkpoint Time. A checkpoint is initiated when the master expects a worker
to end to maximize the overlapping. It consists in storing current jobs’ state
and their configuration. Workers do not need to be checkpointed, they will be
recreated upon restart, scheduling remaining jobs. Our backup consists of a
single JSON formatted file stored in JCHRONOSS’s build directory, alongside
other temporary files. JSON format is flexible and easy to manipulate inside
JCHRONOSS, however, for now, the JSON file is not compressed and can lead
to both IO and parsing overhead depending on validation suite size. We are
considering the use of a binary JSON (BSON) to optimize this process.

Restart Time. After an interruption, JCHRONOSS can be restarted from the
backup file. To do so, current configuration is ignored and previous one is
reloaded. Then, job manager’s state is restored from the backup JSON file.
Finally, validation can restart seamlessly. In order to save disk space, following
backup files replace previous ones. Therefore, the most recent backup is always
kept and calling the same command line over again in case of failure allows the
completion of an incomplete test-suite thanks to our fault-tolerance mechanism.

Overhead. We plan to make a deep evaluation of fault-tolerance mechanism
overhead. For now, our experiments show that it takes 1 second per worker to
back up 10,000 tests and the global overhead does not exceed 1.2%. Clearly, the
number of tests can be different and the number of workers can noticeably vary
depending on the user’s configuration. By trying to checkpoint only validation
state and not JCHRONOSS itself, we significantly decrease implied backup over-
head. It is important to say that the major part of this overhead is recovered by
workers instance currently running. However, this mechanism can become really
costly with an important number of workers, this increasing checkpoint time,
not completely recovered by shorter workers.

4 Experimental Results

JCHRONOSS has been developed for and is being used on a daily basis as
MPCJ7] validation system to manage a test base of forty thousand jobs, test-
suite likely to be executed on several supercomputers, involving different en-
vironments for portability tests. JCHRONOSS’s goal is to speedup validation
processes without sacrificing their portability between machines. In this pur-
pose, the important variability between HPC machines had to be taken into
account. Indeed, as aforementioned several parameters affect scheduling such as
current, user priority and specific latency due to cluster load. Moreover, as the
machine load is highly variable, we cannot predict allocation overhead. Then,
two successive JCHRONOSS runs, with similar parameters might not lead to the
same result. We were careful to present tests with similar configurations while
mitigating these random effects. These benchmarks were performed on two dif-
ferent supercomputers. First the Curie supercomputer, operated in the TGCC ,
which is heavily loaded by multiple users, leading to long waiting queues. The
batch manager, based on SLURM is configured with user priorities. Second su-
percomputer is a 111 nodes x 8 cores prototype, with fewer users and a flexible
batch manager. Comparisons will be made between these two environments, re-
spectively with and without priority based algorithms applied at batch manager
level. The NRB used here is a suite of 39,366 jobs with fixed execution times
to allow policies comparison over multiple runs while minimizing measurement
noise. These configurations have been run with the same subset of available re-
sources, allowed to perform tests on 48 nodes. We compare policies in terms of
elapsed time on each of these supercomputer. These comparisons will be made
alongside CTest performance with the same set of tests. The Figure 2] depicts
these results.

Complete validation
suites were run on each of
these machines with dif-] — |00 Curie cluster
ferent policies in order to 30 [[0Prototype cluster ||
compare batch manager
configuration effects. The
fixed number of resources
is set to 4. Vertical axis
represents the number of
hours elapsed in the run.
CTest results have been
run sequentially (ctest Hﬂ
-j4) to be able to com- oLt ‘ ‘ ==
pare with JCHRONOSS. CTest Default Criteria Best fit
Indeed, the -j option al-
lows tests to be run in

20 n

Elapsed Time (h)

10

Fig. 2. Policies efficiency comparison between two

parallel without discrimi- supercomputer job managers.
nation, impling job over-
submissions and causing

the user to violate the QoS policy and account to be blocked if the value is too
high. Each job keeps the same execution time in each execution. We consider
that machine load variation did not impact test-suite duration between policies,
Curie being loaded and our test cluster almost empty. These results illustrate
the need to carefully choose scheduling policies according to cluster, allocation
overhead being highly depending on batch manager. Default sequential policy
clearly shows its limits, providing no performance gains on the test-cluster and
leading to an important penalty on Curie. More importantly, allocation overhead
even led to poor performances relatively to the aggregated reference. Default pol-
icy created around 40,000 new allocation requests, each of them associated with
a resource allocation, explaining the overhead observed on the loaded cluster.
This policy roughly applies the same methodology than other test-runner tools,
as depicted by the sequential CTest performance results.

Our criteria-based policy shows a non-negligible time reduction with a 2.5
speedup. Packing jobs relatively to resources seems to be a good alternative to
sequential execution. Indeed, considering of N jobs, this solution can save up to
N — 1 new allocations if they are all using the same number of resources.

Eventually, best fit algorithm shows the best speed-up of 25, independently
from the underlying batch manager. The optimizations made by this policy,
spreading jobs among resources in order to save time have proven to be effective.
More importantly, this approach seems to be less sensitive to batch-manager
policy, making it more suitable for portability. Best fit is then both the fastest
and the most portable policy — reason why it is the default one in JCHRONOSS.

5 Future Work

Optimize time to result. Currently, all tests defined by the user must be per-
formed before publishing the results. Therefore, it can happen that the whole
test suite has to be completed before the user is able to consult the results,
including intermediate ones. In order to make time to result shorter, a deamon
server, provided as a JCHRONOSS plugin and running globally on interactive
nodes, could interact directly with worker instances, periodically collecting job
results and making data accessible from a client browser. To reduce the number
of deamons, a single server would handle multiple JCHRONOSS instances.

Becoming a complete end-to-end validation tool. For now, existing validation
processes would have to be rewritten in order to generate a suitable input for
JCHRONOSS. We suggest making our tool compliant with upstream and down-
stream tools, avoiding test specifications rewriting. JCHRONOSS should include
a job generator module, which could take data from existing build systems like
CMake or Autotools. Dealing with the output, JCHRONOSS generates it in
standard JUnit XML format. However, some other formats could be more suit-
able for post-processing. A generic output generation module would bring more
flexibility to the end-user. Our idea is to gather in one single tool all valida-
tion steps from the build system to the result mining platform, leading to an
end-to-end validation tool.

6 Conclusion

JCHRONOSS is a parallel and resilient frontend for high-performance validation
suites that run distributed tests in parallel in order to reduce time to result. Be-
yond just taking advantage of parallel computing resources, JCHRONOSS looks
for optimal trade-offs between efficiency and duration. Its multiple scheduling
policies are suitable for most use cases, allowing JCHRONOSS to be an inno-
vative agile tool designed for HPC workloads. JCHRONOSS can be adapted
to various execution environments and is compatible with existing validation
tools such as Jenkins and BuildBot. We demonstrated validation speedup up to
25x on an actual use case of =~ 40,000 tests, clearly showing the advantage of
our approach. JCHRONOSS is then a convenient building block for developers
willing to apply continuous integration methods to their HPC project without
developing their own launch scripts to speedup validation. As validation system
reactivity is a critical point, the important duration associated with large NRB
can be a possible explanation of why some projects are not validated regularly.
The purpose of our work is to make HPC project validation suites more efficient
in terms of both computational costs and execution time. Indeed, a faster valida-
tion system simplifying continuous testing opens the way for better programming
practices and transitively enhances code quality.

References

Cruisecontrol website. http://cruisecontrol.sourceforge.net/.

TravisCI website. https://travis-ci.org/.

A. Berg. Jenkins Continuous Integration Cookbook. Packt Publishing Ltd, 2012.
J. Calcote. Autotools: A Practitioner’s Guide to GNU Autoconf, Automake, and

Libtool. No Starch Press, 2010.

5. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

6. B. Hoffman, D. Cole, and J. Vines. Software process for rapid development of
hpc software using cmake. In DoD High Performance Computing Modernization
Program Users Group Conference (HPCMP-UGC), 2009, pages 378-382. IEEE,
2009.

7. M. Pérache, H. Jourdren, and R. Namyst. Mpc: A unified parallel runtime for
clusters of numa machines. In Euro-Par 2008-Parallel Processing, pages 78-88.
Springer, 2008.

8. V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop yarn: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Com-
puting, page 5. ACM, 2013.

9. A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.
Large-scale cluster management at google with borg. In Proceedings of the Tenth
European Conference on Computer Systems, page 18. ACM, 2015.

10. A. Yoo, M. Jette, and M. Grondona. Slurm: Simple linux utility for resource man-
agement. In D. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors, Job Schedul-
ing Strategies for Parallel Processing, volume 2862 of Lecture Notes in Computer

Science, pages 44—60. Springer Berlin Heidelberg, 2003.

Ll e

http://cruisecontrol.sourceforge.net/
https://travis-ci.org/

	A Parallel and Resilient Frontend for High Performance Validation Suites
	Julien Adam , Marc Pérache

