
A Cross-Core Performance Model for
Heterogeneous Many-Core Architectures

Rui Pinheiro, Nuno Roma, and Pedro Tomás ?

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Abstract. An accurate performance predictor to identify the most suit-
able core-architecture to execute each thread/workload in a heteroge-
neous many-core structure is proposed. The devised predictor is based
on a linear regression model that considers several different parameters
of the many-core processor architectures, including the cache size, issue-
width, re-order buffer size, load/store queues size, etc.. The devised pre-
dictor is easily integrated in most system schedulers, providing the ability
to periodically determine whether a certain thread is running in the most
efficient core-architecture. The obtained experimental results show that
the devised model is able to identify the correct core-architecture in a
large majority of the cases, leading to average performance differences
as low as 7% when compared with an oracle scheduling solution.

1 Introduction

Advances in processor design have recently pushed for the development of het-
erogeneous processors, in order to tackle the power and memory walls. In par-
ticular, by relying on appropriate and different core architectures, it is possible
to efficiently leverage Memory-Level Parallelism (MLP) and Instruction-Level
Parallelism (ILP) [4, 5] such as to minimize power and energy consumption with
a reduced performance loss. However, exploiting heterogeneity often requires the
development of efficient scheduling mechanisms, in order to anticipate the perfor-
mance gains due to the migration of an application from one core to another, or
to the morphing of a given core, which can be achieved by means of clock/power
gating or by relying on reconfigurable technologies.

In particular, driven by the introduction of the ARM big.LITTLE hetero-
geneous processor [1] (although not exclusively), intensive research has recently
been put forth in the exploitation of heterogeneous processor systems composed
of multiple in-order and out-of-order cores, by developing methodologies to man-
age the allocation of tasks to cores. For example, Patsilaras et al. [6] described
a Chip Multi-Processor (CMP) with two core architectures, where one is tuned
for exploiting MLP and the other for ILP. To manage the application allocation,
the authors make use of on-line sampling techniques performed on both core ar-
chitectures, as well as a heuristic algorithm based on the detection of clustered
Last-Level Cache (LLC) misses.

? This work was partially supported by national funds through Fundação para a
Ciência e a Tecnologia (FCT), under project UID/CEC/50021/2013.

2 Rui Pinheiro, Nuno Roma, and Pedro Tomás

A similar methodology was employed by Kumar et al. [5], although rely-
ing on a two-stage approach. During the first stage (sampling), applications are
permuted over all core architectures in order to obtain a set of per-core statis-
tics, retrieved from Hardware Counters (HCs). In a second stage, the gathered
statistics are used to predict which core is better suited to each application.
Although the authors consider the possibility of using more than two differ-
ent core types,they still require periodic on-line sampling of all application-core
permutations, a slow process during which the system is running sub-optimally.

Various attempts have been made to avoid this slow sampling process. Shele-
pov et al. [10] described a computational system where the scheduler is supplied
with application signatures, obtained through off-line analysis. However, this re-
quires all applications to be re-compiled specifically for such a system, which is
not always feasible. Saez et al. [8] use the count of LLC misses to grossly estimate
the speedup factor without having to sample all application-core permutations.
However, other parameters (e.g., core width), which cause many different in-
teractions affecting application performance, cannot be properly described by
just analyzing cache miss rates. Craeynest et al. [12] took a similar approach,
by deriving a HC based simplified model to estimate performance differences
between small in-order and big out-of-order cores. Based on this model, the
authors developed a system scheduler to regularly estimate the performance of
running applications on the alternate core and decide whether a core switch is
worthwhile. However, this approach is constrained to two core types and only
takes into account changes in Re-order Buffer size and issue width. Pricopi et
al. [7] took inspiration from these two approaches and developed a prediction
model specifically for the ARM big.LITTLE processor able to take into account
more architectural parameters, using a mixture of HC statistics and offline anal-
ysis. However, in addition to the requirement of an offline analysis, it still only
considers two possible core variations at once.

In accordance, this paper addresses the identified issues and limitations, by
proposing a new low-overhead architecture-independent method to derive adapt-
able models that estimate the attainable performance over a large range of vary-
ing micro-architectural parameters, and that can be used both at a hardware-
level, or as a software module integrated into the OS scheduler. The considered
approach uses a Linear Regression Model based on several commonly available
HCs. In order to fully illustrate the proposed method, an example model based
on out-of-order cores with different cache hierarchies, Re-order Buffer (ROB),
Load Queue (LQ) and Store Queue (SQ) sizes was derived. The resulting model
was then cross-validated with a set of 81 different core types using the PAR-
SEC benchmark suite [2] and the micro-architectural simulator Sniper [3]. The
proposed model is shown to be highly accurate for all considered core types.

2 Performance Modeling

Most current processors are equipped with multiple HCs that can be config-
ured to measure various runtime statistics (e.g., cycle counts, retired instruc-

A Cross-Core Performance Model for Het. Many-Core Architectures 3

tions, cache misses), which can then be used to infer the application perfor-
mance [8, 10, 12]. Such information allows for the development of intelligent
software and/or hardware modules, capable of scheduling running applications
to the most appropriate core architectures and/or adapting the characteristics of
each core according to the scheduled application’s computational requirements.
Hence, it is herein considered that, during program execution, a set of HCs are
measured at a source core, in order to characterize the current application phase.
Based on such information, the devised system is able to predict the attainable
performance on a target core, in order to support a decision on whether to move
the thread to a different core or to apply any core morphing techniques. Like pre-
vious cross-core performance models, the proposed methodology assumes that
any cross-thread interaction effects (i.e., cache sharing or synchronization) are
core-independent, such that they manifest on all target cores similarly to the
source core, reducing the modeling difficulty considerably.

Hence, this manuscript leverages the correlation between HC statistics and
application performance in order to derive cross-core performance models. To
attain such a goal, a Linear Regression Model (LRM) is adopted, which allows
accurate performance predictions across hypothetical changes on several micro-
architectural parameters, given an initial representative training set. Moreover,
considering that the retired instruction count is an easy-to-measure and core-
independent runtime statistic, it is used to normalize all runtime statistics into
an application-independent scale that is easier to work with. As a result, Cycles
Per Instruction (CPI) becomes an obvious choice for performance metric and is
therefore used as LRM dependent variable, since it can also be easily measured
and is already normalized by the instruction count.

Furthermore, in order to improve the quality of the model, a logarithm link
function is used. This is a natural approach, not only because the CPI metric
is always positive, but also because experimental evaluation has shown that the
original model’s residual distribution is log-normal. Accordingly, since normally-
distributed residuals are preferable in order to ensure that the least-squares
estimator matches the maximum-likelihood estimator (as the latter has better
statistical properties [9]), the proposed model is built based on the regression

log(ˆCPItgt) = β0 + β1 log(CPIsrc) +

N∑
i=1

βi+1xi , (1)

where ˆCPItgt represents the estimated CPI at the target core, βi are model coef-
ficients (in particular, β0 represents the constant or intercept term), log(CPIsrc)
represents the logarithm of the CPI measured in the source core, and x1, · · · , xN
represent the set of N regression terms obtained by coupling the statistics gath-
ered by using HCs with the micro-architectural parameter variations. Each re-
gression term xi is herein considered to express the product of the variation ∆p
of a given micro-architectural parameter p between the source (psrc) and target
(ptgt) cores (∆p = ptgt − psrc), with a runtime statistic Si, normalized by the
retired instruction count I, xi = Si

I ∆pi.

Concerning the selection of regression terms, it is important to note that,
although the model accuracy increases with the introduction of more regression

4 Rui Pinheiro, Nuno Roma, and Pedro Tomás

Table 1: Description of the considered set of core parameters, together with their
dominant effects concerning the attained performance.

Architecture
Parameter

Description Dominant Effects

L{1, 2, 3}size Total size of caches
L1, L2 and L3

Impacts the cache hit rate, significantly impacting the
memory access latency.

LQsize Load Queue size When full, generates structural hazards for new load
instructions, causing pipeline stalls at the issue stage.

SQsize Store Queue size When full, generates structural hazards for new store
instructions, causing pipeline stalls at the issue stage.

ROB Re-order Buffer size When full, generates structural hazards, leading to stalls
at instruction issue.

W Core issue, dispatch
and commit Width

Affects the peak instruction throughput at issue, dis-
patch and commit stages.

terms, this leads to an increase in model complexity and possibly to over-fitting,
reducing its effectiveness with unobserved applications. It is therefore important
to pick the minimum number of terms that allow an effective modeling of the
dominant effects of all architectural parameters of interest. This procedure can be
automated using statistical methods for automatic regressor choice, for example
Lasso [11] or Elastic Net [13], which provide the means for an automatic search
over the regressor space in order to retrieve the most adequate architectural
parameters and runtime statistics.

In order to obtain a generic model that covers a representative set of pa-
rameters, and simultaneously shows the flexibility of using a LRM to predict
performance differences between different cores, a highly heterogeneous many-
core CMP is herein considered as an example proof of concept, including many
different out-of-order architectures of varying cache sizes (although limited to
equal sized L1 instruction and data caches), issue widths, ROB sizes, as well as
different load and store queue sizes (modeled as two separate queues). The set
of considered parameters and their dominant effects are summarized in Table 1.

Accordingly, it is necessary to choose runtime application-dependent statis-
tics that are most correlated with the dominant effects of each micro-architectural
parameter being varied. In order to choose between different runtime statistics
that explain similar effects, their effect on the model prediction quality was
evaluated by relying on the Sniper Multi-Core Simulator [3] to provide accu-
rate simulations of several x86 micro-architectures. To analyze the results, the
t-statistic (i.e., significance) was used, as well as the coefficient of determina-
tion R2 of the resulting model. Nonetheless, the ease of measuring the various
possible statistics in real hardware was also taken into account. The result of
this analysis is presented in Table 2. As can be seen, all the chosen statistics
correlate with at least one of the dominant effects mentioned in Table 1. To
better illustrate the considered statistics, the maximum t-statistic value for a
corresponding 3-coefficient model (N = 1) is also presented, measured under the
same experimental methodology as the results that will be presented in Section 3.
For comparison purposes, some statistics that were left out from the proposed

A Cross-Core Performance Model for Het. Many-Core Architectures 5

Table 2: Runtime statistics subset (most-relevant) for each processor parameter,
the corresponding effect, and the maximum observed absolute t-Statistic value.
Boldfaced t-Statistic values represent the variables used in the final model.

Architecture
parameter

Hardware counter Correlation t-Stat.

Core Width
(W)

I: Instruction Count Peak performance 11.36
Hdep: Data Hazards at dispatch Instruction interdependency 10.12

ROB Size
(ROB)

Hrob: Hazards due to full ROB ROB occupancy 6.62
Hdep: Data Hazards at dispatch Instruction interdependency 6.75

Load Queue
Size (LQsize)

LD: Load Uops Count Load queue usage rate 26.81
Hlq: Hazards due to full LQ Load queue usage rate 18.11

Store Queue
Size (SQsize)

ST : Store Uops Count Store queue usage rate 19.51
Hsq: Hazards due to full SQ Store queue usage rate 16.71

Cache Size
(L{1, 2, 3}size)

L{1,2,3}miss: Cache miss Count Memory access latency 7.80
LD: Load Uops Count Cache access rate 3.81
ST : Store Uops Count Cache access rate 4.12

model are also shown. As can be seen, their corresponding t-statistic values are
considerably lower than that of the selected HC based statistics (in boldface).

Conversely, it was observed that some of the variables present a non-linear
correlation with the corresponding architecture parameter. To model such cases,
a second-order Taylor series expansion was used, in order to allow an effective
modeling of the architectural effect, while preserving model simplicity. Hence,
the following simple (but still highly representative) 14-term LRM was obtained:

log(ˆCPItgt) =β0 + β1 log(CPIsrc) + β2 L1missn ∆L1size +

β3 L2missn ∆L2size+ β4 L3missn ∆L3size +

LDn (β5 ∆LQsize+ β6 ∆LQsize
2) +

STn (β7 ∆SQsize+ β8 ∆SQsize
2) +

Hdepn(β9 ∆ROB + β10 ∆W)+

β11 Hrobn ∆ROB + β12 ∆W + β13 ∆W
2 .

(2)

Finally, the coefficients βi can now be calculated by training the above LRM
with observations obtained by running a representative set of benchmarks on all
core variations of interest, resulting in a linear number of models, one per core.

3 Experimental Results

In order to properly evaluate the developed cross-core performance model, the
Sniper Multi-Core Simulator [3] was used, to provide accurate simulations of
several x86 micro-architectures. Hence, a vast set of core variations was described
in this simulation framework, by varying several micro-architecture and cache
organization parameters, as depicted in Tables 3 and 4. In accordance, a total
of 81 different core variations were simulated, allowing an effective modeling of
the interaction between several parameters.

6 Rui Pinheiro, Nuno Roma, and Pedro Tomás

Table 3: Considered cache hierarchy variations (associa-
tivity, set count, and total size in KB); The block size
was set fixed and equal to 64 Bytes.

L1-D; L1-I L2 L3

Name Assoc. # Sets Total Assoc. # Sets Total Assoc. # Sets Total

Small 2 8 1 4 32 8 8 1024 512

Medium 2 16 2 8 64 32 16 2048 2048

Large 4 32 8 8 256 128 16 8192 8192

Table 4: Considered
architecture variations

Parameter Values

Core Width 1; 4; 8

L/S Queue Size 1; 5; 10

ROB Size 32; 64; 128

To ensure the representativeness of the devised model when considering mul-
tiple types of workloads, the PARSEC [2] benchmark suite was chosen for its
training and validation procedures. For such purpose, simulator-specific magic
instructions were added to each of the eleven PARSEC benchmarks, in order to
define the appropriate simulation Region of Interest (ROI) for each benchmark
and exclude the initialization and shutdown phases, since these are uninteresting
from an architectural point-of-view. These benchmarks were then executed to
completion using the predefined ”small” input set on each of the 81 different
processors, with the pre- and post-ROI sections simulated in fast-forward mode
in order to reduce the processing time. All runtime statistics required by the
model were measured during the execution and stored for later processing.

3.1 Model validation

Since the model assumes the representativeness of the training set for all possible
applications and cores, it makes sense to use as much information as possible
during its validation. Therefore, a leave-one-out cross-validation approach was
adopted, such that one random observation was removed from the training set
in each iteration, and subsequently used for model validation. In order to fur-
ther illustrate the quality of the model, multiple goodness-of-fit measures were
calculated for each of the 81 individual source core models.

Figure 1 presents the CPI normalized prediction over all considered archi-
tecture variations, represented as a Tukey box-plot for each benchmark. As can
be observed, the model provides accurate predictions over a wide range of appli-
cation characteristics for all considered core parameters. On the other hand, it
can also be observed that the largest prediction error occurs for the canneal and
streamcluster applications, which is explained by the fact that these benchmarks
comprehend a larger inter-phase variation of the observed CPI. Such a variation
could be explained (in future work) by evaluating the error across application
phases, instead of evaluating across the whole application execution.

An F-test of overall significance [9] was also performed on all models, in
order to evaluate whether a simple intercept-only fit would be statistically indis-
tinguishable from the proposed models. The obtained results showed a p-Value
of 0 for all cases, which fulfills this basic quality requirement.

Lastly, a scheduler-specific validation test was performed, which evaluates
whether the proposed model could effectively predict the most efficient core for
each application. Hence, for each iteration of the test, a permutation of one

A Cross-Core Performance Model for Het. Many-Core Architectures 7

no
rm

al
iz

ed
 p

re
di

ct
ed

 C
P

I
(r

el
at

iv
e

 to
 o

bs
er

ve
d)

benchmark
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

- blackscholes
- bodytrack
- canneal
- dedup
- ferret
- fluidanimate
- raytrace
- streamcluster
- swaptions
- vips
- x264

Min Max
R² 0.919

RMSE 0.157 0.179
0.937

0

0.5

1

1.5

2

Fig. 1: Predicted CPI (with cross-validation) for all considered architecture varia-
tions, with the minimum and maximum values of the coefficient of determination
(R2) and of the Root Mean Square Error (RMSE) obtained for all models.

Table 5: Scheduler validation test results
of Cores N 2 3 6 11

Random Scheduler CPI 1.67 1.67 1.67 1.67

Best/Oracle Scheduler CPI 1.38 1.22 1.07 1.03

Proposed Model Scheduler CPI 1.41 1.28 1.15 1.10

Relative Error (Proposed vs. Oracle) 2.17% 4.92% 7.48% 6.80%

source core and N −1 alternative target cores was picked at random. The model
was then used to predict the best core (minimum CPI) for each application,
out of the N possible choices. The observed CPI in the chosen core was then
compared with the observed CPI of a scheduler using either a random or an
oracle policy. A total of 891 000 iterations of this validation mechanism were
executed using different values of N . The results, presented in Table 5, show
that the model manages to estimate the correct core in a large majority of the
cases. Furthermore, when the proposed model performs an incorrect guess, only
a reduced performance loss is observed when compared to the oracle case.

4 Conclusions

An accurate performance predictor based on a Linear Regression Model is herein
proposed to identify, within a heterogeneous many-core processor, the most suit-
able core-architecture to execute each thread/workload. Hence, it considers the
co-existence of multiple cores, characterized by several different parameters, in-
cluding the cache size, issue-width, ROB size, load/store queues size, etc.

The devised predictor is easily integrated in most system schedulers, pro-
viding the ability to periodically determine whether a certain thread is running
under the most efficient core-architecture. Conversely, it can also be used in mor-
phable or dynamically reconfigurable structures, not only to determine when the
processing architecture should be reconfigured, but also to determine the corre-
sponding set of parameters.

The experimental evaluation showed that the devised model is able to identify
the correct core-architecture in a large majority of the cases, leading to average
performance differences as low as 7% when compared with the oracle solution.

8 Rui Pinheiro, Nuno Roma, and Pedro Tomás

The offered flexibility makes the devised model easily adaptable to other
optimization metrics besides the considered CPI. As an example, an energy
estimation model can be easily implemented, in order to obtain energy/power-
aware scheduling schemes.

References

[1] big.LITTLE Technology: The Future of Mobile. Tech. rep., ARM (2011),
available at https://www.arm.com/files/pdf/big_LITTLE_Technology_
the_Futue_of_Mobile.pdf

[2] Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton
University, Princeton, NJ, USA (2011)

[3] Carlson, T.E., Heirman, W., Eyerman, S., Hur, I., Eeckhout, L.: An evalu-
ation of high-level mechanistic core models. ACM Transactions on Archi-
tecture and Code Optimization (TACO) (2014)

[4] Kumar, R., Farkas, K.I., et al.: Single-ISA heterogeneous multi-core ar-
chitectures: The potential for processor power reduction. In: 36th Annual
IEEE/ACM International Symposium on Microarchitecture. pp. 81–92. MI-
CRO 36, IEEE Computer Society (2003)

[5] Kumar, R., Tullsen, D.M., et al.: Single-ISA heterogeneous multi-core ar-
chitectures for multithreaded workload performance. SIGARCH Comput.
Archit. News 32(2), 64–75 (2004)

[6] Patsilaras, G., Choudhary, N.K., Tuck, J.: Efficiently exploiting memory
level parallelism on asymmetric coupled cores in the dark silicon era. ACM
Transactions on Architecture and Code Optimization (TACO) 8(4), 28:1–
28:21 (2012)

[7] Pricopi, M., Muthukaruppan, T.S., et al.: Power-performance modeling on
asymmetric multi-cores. In: 2013 Int. Conference on Compilers, Architec-
ture and Synthesis for Embedded Systems (CASES). pp. 1–10 (2013)

[8] Saez, J.C., Prieto, M., et al.: A comprehensive scheduler for asymmetric
multicore systems. In: 5th European Conference on Computer Systems. pp.
139–152. EuroSys ’10, ACM (2010)

[9] Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. John Wiley & Sons
(2003)

[10] Shelepov, D., Saez Alcaide, J.C., Jeffery, S., Fedorova, A., Perez, N., Huang,
Z.F., Blagodurov, S., Kumar, V.: HASS: A scheduler for heterogeneous mul-
ticore systems. SIGOPS Oper. Syst. Rev. 43(2), 66–75 (2009)

[11] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996)

[12] Van Craeynest, K., Jaleel, A., et al.: Scheduling heterogeneous multi-cores
through performance impact estimation (PIE). In: 39th International Sym-
posium on Computer Architecture. pp. 213–224. ISCA ’12, IEEE Computer
Society (2012)

[13] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
67(2), 301–320 (2005)

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

	A Cross-Core Performance Model for Heterogeneous Many-Core Architectures
	Introduction
	Performance Modeling
	Experimental Results
	Model validation

	Conclusions

