Evaluation of Runtime Cut-off Approaches for
Parallel Programs

Alcides Fonseca! and Bruno Cabrall

University of Coimbra, Portugal
{amaf,bcabral}@dei.uc.pt

Abstract. Parallel programs have the potential of executing several
times faster than sequential programs. However, in order to achieve its
potential, several aspects of the execution have to be parameterized, such
as the number of threads, task granularity, stack sizes, etc. In this work
we focus on studying the granularity of regular and irregular parallel
programs on symmetrical multicore machines. The granularity can be
controlled by a loop division factor, or by a cut-off mechanism that stops
the parallelization of work and executes the remaining serially. The cut-
off mechanism can impact the execution time of the program by several
orders of magnitude.

Existing studies have analyzed only two cut-off approaches at a time,
each with its own set of benchmarks and machines. In this work we
present a comparison of a manual threshold approach to 5 state-of-the-art
algorithms (MaxTasks, MaxLevel, Adaptive Tasks Cutoff, Load-Based
and Surplus Queued Task Count) and 3 new derivative approaches (Max
Queue Size, StackSize and MaxTasks With StackSize). The evaluation
was performed using 13 parallel programs, including divide-and-conquer
and loop programs, on two different machines with 24 and 32 hardware
threads, respectively.

We concluded that the best approach is machine-dependent and program-
dependent. Despite not being the ideal conclusion, it is significant to show
that existing studies did not prove that one algorithm was better than
the others overall. Existing approaches are also not ideal for all cases.

Keywords: Runtime, Cut-off Mechanism, Granularity, Multicore

1 Introduction

Nowadays, making parallel programs faster is a manual process that relies on
a lengthy trial-and-error process in order to achieve the best parameters. This
process also requires a domain expertise on optimizing parallel programs. Factors
like thread or task creation, memory allocation and cache usage are fundamental
into obtaining the best performance out of a multicore machine.

Although parallel programs can be more complex, we will focus on two of
the most common parallelism patterns: for-loops and recursive programs. Par-
allelization of for-loops has been the basis of several wide-adopted frameworks,

such as OpenMP[1]. Recursive programs have been the focus of parallelization
in other frameworks such as Cilk[2] and ForkJoin[3].

In both patterns, the decision when to create new parallel tasks, or to execute
some parts sequentially is a central problem for improving the performance of
the program. If the tasks are too coarse, there is still potential parallelism to
extract since some of the hardware threads will not be in use. If the parallelism
is too fine-grained, too many tasks will be created, imposing an overhead in task
scheduling and management that will increase the duration of the execution.
Achieving a good balance for all kinds of programs on different machines is thus
crucial to achieve a good performance.

In this paper, we will study the most relevant state-of-the-art approaches to
control the granularity of tasks at runtime. Alongside these, two new approaches
will be analyzed and studied. The goal of the study is to understand how these
algorithms perform on parallel programs with different natures and on different
machines, in order to understand which one should be used and when.

The remaining of the paper is organized as follows: Section 2 introduces the
topic of granularity control; Section 3 details several approaches for controlling
the Cut-Off threshold for parallelization; Section 4 evaluates some of those Cut-
Off mechanisms; and finally, Section 5 presents the final conclusions of this study.

2 Granularity Control

Parallelizing compilers try to match parallel tasks with the layout of the under-
lying hardware. The static scheduling divides a loop in N chunks, one for each
processor[4]. However, not all programs have this regular and static parallelism.
However some programs have a more dynamic behavior, and the number of tasks
changes across time. For these programs, runtime-based approaches are needed.

One common approach is to use a work-stealing scheduler, with Lazy Task
Creation[5](LTC) as a granularity control mechanism. Potential parallel tasks
might be executed inlined, or added to the work queue as a new task, accord-
ing to different cut-off techniques. These cut-off techniques will be described in
Section 3.

This cut-off mechanism to decide whether to parallelize has a great impact
on the performance of programs. An OpenMP evaluation[6] has compared two
approaches (mazlevel and maztasks) and there were differences of up to 3x of
speedup. Two other studies, one also within OpenMP[7] and other comparing
OpenMP to other approaches [8], have shown differences between the two cut-off
mechanisms on unbalanced task graphs. This paper makes a broader evaluation,
looking at how this and other decision algorithms perform on a heterogenous
benchmark suite.

3 Cut-off Mechanisms

In this section we will introduce and describe several mechanisms for controlling
the granularity of tasks at runtime. A cut-off mechanism is an algorithm that

decides whether a task will spawn new tasks for parallel work, or it will execute
tasks sequentially.

Programmer-defined cut-off limit - The simplest approach is to have a
condition which stops the parallelism, customized by the programmer for a spe-
cific program. However, this programmer-defined cut-off requires the developer
to have a knowledge of the domain and parallelization method, as well as abil-
ity to test the programs several times on the target hardware. With automatic
parallelization, this is not possible.

Load Based - This simple heuristic is based on whether all cores are being
used or not. A new task is only created if there is at least one idle core[9].

Maximum task recursion level (max-level) - Divide-and-conquer algo-
rithms create tasks in a tree-shaped structure. In order to avoid the creation of
too many tasks, the cut-off limit may be defined by the depth of the recursion[6],
which can be calculated by the number of ancestors of the running task.

Maximum number of tasks (max-tasks) - In this approach, tasks are
created until the total number of active tasks in all worker queues reaches a
certain threshold[6]. After that point, all new computations are inlined instead
of spawning another thread. When the number of active tasks lowers, new tasks
can be created until the threshold is reached again.

The threshold in this approach is typically defined as the number of processor
threads on the machine, adapting to different machines, but being oblivious to
other factors such as memory and processor speed.

In order to decrease the overhead of computing the size of queues, the size of
other queues is estimated from the size of the current queue after applying a fac-
tor of (number of idle threads / active threads), because idle threads are known
to have 0 tasks in their queue. This estimation assumes a regular distribution
among threads, which may not always happen.

Adaptive Tasks Cut-Off (ATC) - Adaptive Tasks Cut-Off[9] changes
the policy of the cut-off mechanisms according to the recursion. Tasks are only
created if two conditions are met. The first is that there are fewer tasks than the
number of threads on a given recursion level. This condition forces the threads
to expand in depth, creating work for all threads and being within a certain
bound limit. The second condition is that the depth-level is less than a certain
threshold. Thus, ATC is the combination of maz-level and maz-tasks.

ATC adds a profiler that saves information regarding how much time a sub-
tree takes to execute, and predicts further subtrees (if the prediction is larger
than 1ms, the task will be created). This is, however, based on the assumption
that all tasks inside a level have a similar behavior, which does not happen in
unbalanced parallelism.

Surplus Queued Task Count (surplus) - This approach is included in
Java’s Fork Join framework[3] and it relies on the size of work-stealing queues.
Before creating a new task, the number of queued tasks in the current thread
that exceeds the number of tasks in other queues is compared to a threshold
limit (usually 3 in existing ForkJoin benchmarks).

Oracle - In Oracle scheduling[10], each recursive call is annotated with a
user-defined asymptotic complexity and task depth. This extra-information al-
lows the runtime to predict wether or not it is beneficial to create a new task.
The runtime measures the cost of executing each task, saving that information
as a numeric constant. The asymptotic complexity function is applied to this
constant to predict the relative cost of further calls. In order to adjust to the
program execution, this information is retrieved using a moving average of sev-
eral runs.

Maximum Queue Size (maxtasksinqueue) - We introduce this new ap-
proach, which limits the number of tasks in the local queue to a certain threshold.
This approach differs from mazxtasks in only looking at the local queue, instead
of all the queues, reducing the time by not accessing information from other
threads. If the threshold is one or two tasks higher than the threshold of maz-
tasks, queues will have excedentary tasks that can be stolen by other threads.

Stack Size - In recursive divide-and-conquer programs, the recursivity limit
of the platform imposes heavy limitations on the parallelization of programs.
Recursive calls are necessary to inline the execution of tasks inside the same
worker thread. As such, the performance of programs decreases when the stack
grows beyond a certain size.

Having this in mind, we introduced a new approach, which counts the number
of stack frames produced at a given moment, and only allows the creation of tasks
if that count is lower than a predefined threshold.

Together with this approach, we introduced a hybrid version between Max-
Tasks and StackSize, maxtasks-ss, that first avoids task creation if the number of
stack frames is higher than the threshold. If not, the creation of tasks is regulated
by the MaxTasks mechanism.

4 Cut-off Mechanism Evaluation

In this section, we begin by introducing the methodology, the experimental
setup and the benchmark used. Then, we analyze and compare the different
approaches. Finally, we evaluate how they perform with different numbers of
workers.

4.1 Cut-off Mechanism Selection

This study intends to evaluate as many cut-off mechanisms as possible. From
the ones previously presented, only Oracle has not been evaluated. The Oracle
approach required special annotations with domain-specific knowledge of the
program, giving it an unfair advantage and not being suitable for automatic
parallelization techniques.

4.2 Experimental Environment

The cut-off mechanisms being evaluated were implemented in the Aminium
runtime[11]. The Aminium Runtime is the component of the Aminium language

framework responsible for the execution of DAGs on top of the Java Virtual
Machine. The Aminium Runtime has a work-stealing scheduler, based on the
Java ForkJoin framework[3], with modifications to support atomic tasks and
datagroups.

The two machines used were running Ubuntu 12.10 server 64-Bit and Open-
JDK 64-Bit Runtime Environment (IcedTea 2.3.10) JVM. The OpenJDK 8 run-
time was not used because of a bug that would make memory allocation slower,
thus making the execution of programs longer and less accurate. The machines
were used for the high number of cores, which enable a high level of parallelism.
The different CPU speeds also allows to understand the impact of the CPU
speed in task scheduling.

lName‘ Processor ‘CPU Cores‘ Threads ‘RAM‘

ingrid| Intel(R) Xeon(R) CPU X5660 @ 2.80GHz 12 cores |24 threads|24GB
astrid|Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz| 16 cores |32 threads|32GB
Table 1. Details of the hardware used in the experiments. Note that despite the
different RAM limits, programs rarely exceed 20GB of RAM.

Given the large difference between execution times of some programs with
some algorithms, each run had a 500 second timeout, at which point the execu-
tion was canceled. This was necessary because although all programs run within
that value with the manual approach, several programs executed for more than
48 hours before they were initially cancelled.

The execution time of the benchmark for each approach is the sum of the
medians of each of the programs in the benchmark. Therefore, the weight of the
program is proportional to how long it takes compared to other programs. In
the case of time-outs, the considered time is 500s, which imposes a maximum
difference between approaches.

4.3 Benchmark Suite

The Aminium Benchmark Suite was used to evaluate the cut-off mechanisms
across different parallel programs. The suite aims to include different types of
parallelism: divide-and-conquer, both regular and irregular, for cycles and hybrid
programs. Table 2 describes the programs used. The benchmark is available at
https://github.com/AEminium/AeminiumBenchmarks

4.4 Comparison of Cut-off Approaches

Figure 1 compare the results obtained for each algorithm with the best parame-
ters for that machine. For instance, mazlevel6 refers to the max-level algorithm
with 6 maximum levels of recursion. The parameter evaluation for each cut-off
was omitted for brevity sake.

Program Source Type Balancing|Input size Manual Cutoff
Breadth-first Search|PBBS[12] Recursive|Regular |d=23,w=2 depth >= 21
(BFS)
Black-Scholes PARSEC][13]|For-loop |Regular [10000? LBS
Do-All For-loop |Regular |100 million LBS
FFT ForkJoin[3] |Recursive|Regular |8388608 1 <=1024
Fibonacci ForkJoin|[3] |Recursive|lrregular |[n=39 n <= 26
Genetic Knapsack For-loop |Regular |g=100,p=100, LBS
pr=20%,pm=20%
Integrate ForkJoin[3] |Recursive|lrregular |[s=-2101,e=200, error <= 10
error=10""!
KDTree PBBS[12] |Recursive|Regular |[n=10000000 depth >= 100
Matrix ~ Multiplica-|ForkJoin[3] |For-loop |Regular |p=10000, g=r=1000 |LBS
tion (MM)
MergeSort ForkJoin[3] |Recursive|Regular |[n= 100000000 n <= 100
N-Body PBBS[12] |For-loop |Irregular [n=50000, it=3 LBS
N-Queens ForkJoin[3] |Recursive|Regular |n=8..15 n<=38
Pi For-loop |[Regular |n=100.000.000 LBS
Table 2. Description of the programs used in the benchmark
T [E2 A1_ &3 Forloop B Recursive]
manual manual
loadbased loadbased
maxlevel6 maxlevel8
g maxtasks1 E maxtasks1
£ atc3114 £ atc3114
£ maxtasksinqueue3 £ maxtasksinqueuel
stacksizel6 stacksizel6
maxtasks3ss16 maxtasks3ss16

surplus3

0 200

400

Total execution time with a 500s uppe

600

surplusl

0 300 600 900 1200 1500 1800

Total execution time with a 500s upper limit per program.

Fig. 1. Total time of execution of the benchmark suite using different cut-off approaches
on ingrid (left) astrid (right) machines.

As expected, none of the approaches is better in overall than the manual
solution, in spite of having better results in some programs.

The fastest solutions, loadbased, mazxlevel, maztask, mazxtasksinqueue and sur-
plus, have a very similar performance in programs mainly consisting of parallel
for-loops. Their structure is well-defined and these different approaches do not
show a large improvement. On the other hand, different approaches have distinct
performances on recursive programs, which vary from one machine to the other.
MaxTasks is slightly slower than LoadBased, Surplus or MaxTasksInQueue and

MaxLevel is the least performant of the group. MaxLevel consistently generates
less tasks than the other approaches, which indicates that cutting off parallelism
at that level of recursion does not generate the best number of tasks. On astrid,
the impact of the approaches is much higher given that recursive programs are
much slower than on ingrid. MaxTasksInQueue and Surplus approaches are more
efficient, generating less tasks than other approaches in programs such as Merge-
Sort and Integrate.

The difference of stacksize-based approaches between machines is also inter-
esting. On ingrid, their performance is worse by a large gap in both recursive and
loop programs. On the other hand, stacksized-based approaches are at the same
level as the best approaches on astrid. While loop programs run slower than
other approaches, recursive programs perform better using these approaches.
The Do All program, made of very simple for-loops, can be used to understand
this behavior. The performance of stacksize-based approaches is much worse
than the manual approach while the number of tasks remain similar. Therefore,
the difference lies on the distribution of tasks by queues. This is confirmed by
the number of steals, which is more than 10 times higher in stacksize-based solu-
tions. Thus, we conclude that the stack-size limit does not create the tasks in the
best distribution among threads, requiring more communication between work-
ers. On the NQueens program, another example of for-loops, both maztasks-ss
and stacksize did not finish the execution within the 500 seconds limit. Thus,
limiting the creation of tasks if the number of stack frames is exceeded does not
improve the performance of a regular for-loop programs.

Despite this decrease of performance on loop programs, stacksize-based ap-
proaches have the best automatic performance on a slower machine, astrid. For
instance, in the case of Fibonacci, the only approaches to finish execution within
the 500s limit are manual, maxtasks-ss and stacksize. This shows that this ap-
proach is very interesting, specially in recursive programs on machines similar
to astrid.

5 Conclusions and Future Work

In this paper we have presented the results of several approaches for dynamically
adjusting the granularity of parallel programs during run time. Those results
have shown that the performance of each approach is highly dependent on the
hardware, in CPU speed and number of workers, even with algorithms designed
to adapt do any number of cores.

This conclusion may not appear useful as there is no direct answer to which
cut-off technique to use, but it reveals that most studies performed to evaluate
a cut-off mechanism are insufficient and require a more thorough evaluation
across different machines and programs. We have made our benchmark available
for other to use it and compare different approaches.

As a guideline, MaxTasks and Surplus have shown to have a good overall
performance, with StackSize being a good alternative for CPU-intensive irregular
programs.

For future work, we intend to analyze the structure of the source code to
infer the type of parallelism and use machine-learning techniques to predict the
best cut-off mechanism.

Acknowledgments

This work was partially supported by the Portuguese Research Agency FCT,
through CISUC (R&D Unit 326/97), the CMU | Portugal program (R&D Project
Aeminium CMU-PT/SE/0038/2008). The first author was also supported by the
Portuguese National Foundation for Science and Technology (FCT) through a
Doctoral Grant (SFRH/BD/84448/2012).

References

1. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE 5(1) (1998) 46-55

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. Volume 30. ACM (1995)

3. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 conference
on Java Grande, ACM (2000) 36-43

4. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis: A basis for paral-
lelization, optimization, and scheduling of programs. In: Languages and Compilers
for Parallel Computing. Springer Berlin Heidelberg (1993) 567-585

5. Mohr, E., Kranz, D., Halstead, R.: Lazy task creation: a technique for increasing
the granularity of parallel programs. IEEE Transactions on Parallel and Dis-
tributed Systems 2(3) (July 1991) 264—280

6. Duran, A., Corbal, J., Ayguad, E.: Evaluation of OpenMP Task Scheduling Strate-
gies. (2008) 100-110

7. Olivier, S.L., Prins, J.F.: Evaluating openmp 3.0 run time systems on unbalanced
task graphs. In: Evolving OpenMP in an Age of Extreme Parallelism. Springer
(2009) 63-78

8. Olivier, S.L., Prins, J.F.: Comparison of openmp 3.0 and other task parallel frame-
works on unbalanced task graphs. International Journal of Parallel Programming
38(5-6) (2010) 341-360

9. Duran, A., Corbalédn, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, IEEE Press
(2008) 36

10. Acar, U., Charguéraud, A., Rainey, M.: Oracle scheduling: controlling granularity
in implicitly parallel languages. ACM SIGPLAN Notices (2011)

11. Stork, S., Marques, P., Aldrich, J.: Concurrency by default: using permissions to
express dataflow in stateful programs. In: Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages and
applications, ACM (2009) 933-940

12. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A., Simhadri, H.V.,
Tangwongsan, K.: Brief announcement: the problem based benchmark suite. In:
Proceedinbgs of the 24th ACM symposium on Parallelism in algorithms and ar-
chitectures, ACM (2012) 68-70

13. Bienia, C.: Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-
versity (January 2011)

