
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

A Heterogeneous Runtime Environment for Scientific

Desktop Computing

Nuno Oliveira1, 2, Pedro D. Medeiros2

1Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
no@deetc.isel.ipl.pt

2NOVA LINCS/Dept. Informática, Universidade Nova de Lisboa, Portugal
pdm@fct.unl.pt

Abstract. Heterogeneous architectures encompassing traditional CPUs with
two or more cores, GPUs and other accelerators like the Intel Xeon Phi, are
available off the shelf at an affordable cost in a desktop computer. This paper
describes work towards the definition, implementation and assessment of an
environment that will empower scientists and engineers to develop and run their
demanding applications in such personal computers.

We describe HRTE (Heterogeneous Runtime Environment) that allows the
construction of dedicated problem solving environments (PSE) taking ad-
vantage of those powerful and local processing elements, thus avoiding the use
of remote machines through resource managers that introduce large latencies.
HRTE is tailored to the communication and execution patterns of a PSE, effi-
ciently mapping them to the heterogeneous architecture described. We also de-
veloped an API that eases the development of modules (HModules) that support
multiple parallel implementations and are easily integrated in a traditional PSE.

HRTE functionality and performance and the API used to build HModules
are assessed in the construction of a PSE in the area of Materials Science.

Keywords: Heterogeneous architecture, GPU, PSE (Problem Solving Envi-
ronment), Runtime environment, accelerator, OpenCL

1 Introduction

Scientists have been conducted their research using increasing computational power
to run their simulation models, to analyze large experimental data, and to compare
observed and predicted data. The exploitation of the parallel hardware that supports
the required levels of performance is too complex to one that is not a computer sci-
ence expert. This complexity of hardware, middleware, software versions and stand-
ards must be hidden from the user. The objective is that an expert in a specific science
could define his model or simulation without worrying about the runtime environ-
ment.

Problem solving environments (PSE) are integrated environments for solving a tar-
get class of problems in an application domain. Typically, they encapsulate the state
of the art algorithms and problem solving strategies through an easy interface in a

way that an expert in the application domain could run his model without specialized
knowledge of the underlying computer hardware or software. Several open source
frameworks for building PSEs exist, namely OpenDX, Voreen and SCIRun [1].

PSE environment offers the possibility of using building blocks from a library and
interconnecting them in a network of modules that supports a dataflow model. The
runtime of the PSE toolkit supports the dataflow between modules, the visualization
of the intermediate and final results, as well as the modification of some parameters
during the execution (steering computation). The network of modules can incorporate
domain specific libraries such as numeric computation and visualization.

A PSE provides a diverse set of modules with specific functions and the interface
allows the user to build easily a network of modules. The execution of this network
by the PSE runtime performs the processing steps needed to achieve the goal of the
user. In each moment, the PSE scheduler determines the subset of modules that need
to be executed according to data stream dependencies.

The runtime environments of PSEs need to support high requirements of computa-
tional power. This computational power is typically supported by cluster machines or
even through the grid infrastructure. However, the use of remote parallel processing
platforms implies the submission of requests through batch schedulers that introduce
intolerable latencies for interactive use. A change in the technologies used for execut-
ing PSE modules is necessary in order to achieve a significant reduction of the pro-
cessing times combined with small latencies that allows an interactive use by users.
One promising way to achieve the above stated goal is through the exploitation of the
heterogeneous multi-core architectures present in current desktop computers.

Thereby it is possible to develop new modules that take advantage of multiple CPU
using frameworks as PThreads or OpenMP. For the same reason the operation of
other processing units (PU), such as GPUs, can be carried out by the individual mod-
ules using frameworks like NVIDIA CUDA, OpenCL, etc. Therefore there is no ob-
stacle in develop a module to take advantage of this type of hardware. These PUs are
also known as accelerators and can share the main memory of the main processor
(CPU) or having a private addressing space. In this work we used GPUs with its own
separate address space. These types of PUs causes the module to explicitly copy the
data into the memory of the PU, submit the code (kernel) to be executed, and finally
copy of the data back to the main system memory.

The authors of [2] claim that in many cases the coordinated use of all the PUs of a
heterogeneous architecture allows performance gains when a comparison with a ho-
mogeneous solution is performed. The programmer could implement modules target-
ing the most suitable hardware in mind, using a specific programming model and/or
specific programming libraries.

To deal with the diversity of modules used for a given goal, we propose HRTE
(Heterogeneous Runtime Environment) to support the execution of PSE tasks over the
heterogeneous hardware available on a single desktop computer. HRTE has two main
parts that correspond to the two main contributes of this work:

─ Simplifying the development of new modules. HRTE offers the notion of Heteroge-
neous Module (HModule) supporting several implementations for each type of PU
allowing it to run on multiple hardware architectures. Support of transparent man-

agement of data copy between main memory and memory of the PUs is also in-
cluded. The development of HModules is simplified through the availability of
methods that implements map and stencil parallel control patterns [3] over HRTE.

─ Optimizing the execution of the of module network: HRTE supports efficient access
to large volumes of data flowing between modules in a complex memory hierarchy
(including multi-core CPUs, GPUs and other kinds of PUs). This data flow optimi-
zation between HModules is achieved through the minimization of the number of
data transfers between CPU and PUs memories, taking advantage of the current lo-
cation of the data.

Related work. Several research efforts that allow the exploitation of heterogeneous
architectures for building efficient applications have been successful: OpenCL [4],
HSA [5], StarPU [2], Harmony [6], and PTask [7]. Regarding the convergence of
such efforts and PSE toolkits most of the projects have targeted clusters and grids
[8,9]. Several references exist regarding the use of GPU-enabled modules in PSEs
[10]. Parallel structured programming projects like FastFlow [11] address both heter-
ogeneous architectures and support of dataflow between components (pipeline pat-
tern).

Paper organization. This paper is organized as follows. We begin by describing the
characteristics and organization of HRTE in Section 2, followed by the presentation
of some relevant aspects of the current implementation of HRTE using SCIRun and
StarPU in Section 3. In section 4 we present a case study, namely the application of
HRTE in the implementation of a PSE in the area of Materials Science. Finally we
present the conclusions and current work in Section 5.

2 HRTE Organization

A PSE toolkit provides modules that can be interconnected with other modules in a
dataflow approach. Each module reads its data from inputs, executes an algorithm and
generates its outputs to be sent to other modules. HRTE introduces a new type of
module (HModule). These modules allow the execution of an algorithm in several
platforms (hardware and software). These extensions should maintain compatibility
with original features of PSE. Therefore all existing modules can still be used and can
be interconnected with the new HModules (see Fig. 1).

In most PSEs large volumes of data are transferred between modules. The efficient
support of these huge data transfers and the optimization of its sharing between mod-
ules must be tailored to an environment where a hierarchy of levels of memory exists;
if we consider that some of the modules will be offloaded to an accelerator this im-
plies that the data must also be transferred to and from the accelerator’s memory. The
transfer costs must be considered by the runtime environment, otherwise the gains of
using the accelerator can be hidden by the overheads intrinsic to data transfer between
separate components of the memory hierarchy. Another issue is related with the lim-
ited memory in some accelerators, imposing that the accelerator’s memory may not
accommodate all the data thus implying its partition. Therefore, HRTE must also

extend the PSE’s dataflow between HModules in order to send additional information
about the locality and partition mode of the data transferred.

Fig. 1. A PSE environment with standard modules and the new HModule in same application

To be able to incorporate HModules in an existing PSE framework one must modify
the PSE code to handle the execution of new HModules and the dataflow between
both types of modules. The HRTE organization allows the minimization of changes of
PSE code thus easing the integration of HRTE in different PSE toolkit. These modifi-
cations allow the definition of a new HModule by defining the following methods:

A dynamic library supports all the functionalities of the runtime and is used by the
HModule code. It supports the concept of a heterogeneous function allowing, in the
same module, the availability of different implementations. Next, we give an example
of adding an OpenCL implementation to a HModule:

void hrte_HFunction_add_opencl_code(

hrte_HFunction *hf,char

*kernelName,char *clFile);

Register an OpenCL kernel imple-
mentation indicating the filename
containing the OpenCL code.

The library also supports data management allowing data registration, data partition
(with and without ghost zones). The registration of the data in HRTE is done using
the functions below:

void hrte_matrix3d_register

(hrte_data_handle *handle,void

*ptr,uint32_t nx,uint32_t ny,uint32_t

nz,size_t elemsize);

Register a 3D matrix.

void hrte_matrix3d_set_partitions

(hrte_data_handle handle,int n);
Set number of partitions on data.

void getInputs() Extract data from input ports and register it.

void setOutputs() Generate the data to the output ports of the module.

void hexecute() Definition of actions performed by the HModule.

To simplify the definition of a HModule map and the stencil parallel control patterns
[3] are available as presented here:

void hrte_task_map(hrte_HFunction *hf,

hrte_data_handle in,hrte_data_handle

out,hrte_HFunctionArgs *ha);

Map pattern will apply the hetero-
geneous function to every element
of the input data.

void hrte_task_stencil(hrte_HFunction

*hf, hrte_data_handle

in,hrte_data_handle out);

Stencil pattern will apply the heter-
ogeneous function to every element
and its neighbors.

3 Current HRTE Prototype

At present our prototype has been developed using SCIRun [1] as the PSE frame-
work. As described in previous section we need to extend the SCIRun Module and the
dataflow between modules to integrated HRTE and augmented SCIRun to support
HModules. The definition of a new module in SCIRun implies the definition of a new
C++ class extending from the Module class and the definition of the virtual method
execute that is called when the module is executed. The optional graphical user inter-
face associated with the module is defined in TCL script language and finally the
specification of the input and output ports are made in a XML file. The dataflow that
interconnect modules was extended to include additional information when we have
HModules interconnected.

All the HRTE runtime described in section 2 is supported by StarPU [2]. HModules
are mapped to tasks and codelets; module input and output uses StarPU block man-
agement interface. The modifications made to the PSE dataflow part and the use of
StarPU allows significant performance improvements when executing a sequence of
HModules. This claim had been validated through the use of a network of HModules

Fig. 2. Network used to evaluate the perfor-
mance of dataflow between modules

Fig. 3. Comparison of total execution times
with and without HRTE support

image size Partitions OpenCL HRTE

1 29.3 23.6

2 31.0 25.0

4 27.5 26.1

1 55.2 31.6

2 56.2 34.5

4 67.7 31.4

1 200.9 53.3

2 176.8 60.2

4 205.6 62.4

1 545.3 188.3

2 554.0 184.6

4 556.3 188.5

1 1009.9 339.1

2 1018.8 340.6

4 1023.0 342.5

1 1772.7 575.6

2 1768.8 574.1

4 1785.8 578.1

1 2714.6 891.6

2 2636.8 894.5

4 2734.4 894.6

600

700

100

200

300

400

500

that runs an OpenCL kernel (Fig. 2) that only outputs the data received without any
processing. The evaluation used a machine with an Intel Xeon CPU E5506 at
2.13GHz, 12 GB of RAM and two NVIDIA Tesla C1060. The operating system is
Ubuntu 12.04 x86_64. The GPUs driver is the NVIDIA 340.29. The GPU SDK is
CUDA 6.5.14 (OpenCL 1.1). PSE is SCIRun 4.7 and StarPU is 1.2.0rc2.

In Fig. 3 we compare the execution times of this network with a similar one without
HRTE (same OpenCL kernel). Optimization of dataflow between HModules allows a
reduction in execution time up to 33% over the version that does not use HRTE.

4 A Case Study in Materials Science

In the field of Materials Science, research on composite materials (comprising two
distinct materials, where one constitutes a base matrix and the other acts as rein-
forcement) has a growing relevance in transportation and energy areas [12].

To forecast the characteristics of a new material, it is vital to characterize the rein-
forcement’s population regarding aspects, such as position, size and orientation of the
particles. X-ray computed tomography (X-ray CT) images are used for the characteri-
zation activities. The task of processing and analysing such data is a complex one: not
only there is a huge volume of data to be processed but also there are noise and arte-
facts that must be removed; low contrast between the matrix and the reinforcement
particles, due to small density difference makes this processing computing intensive.

Support of this processing and its easy handling by a non IT specialist requires an
environment that allows the definition of a sequence of computational processing
steps as well as its parameterization values in an interactive and real time way. In this
setting, the construction of a PSE to the characterization of reinforcement population
in 3D tomographic data is an opportunity for assessing the functionality and perfor-
mance of HRTE. The images obtained by CT need processing to eliminate noise and
allow the detection of boundaries between the base material and the reinforcement
particles.

We developed three HModules to process the tomographic 3D image. The modules
perform in sequence bi-segmentation, hysteresis and ImageLabeling operations.
Bi-segmentation transforms the CT 3D original greyscale image to an image with
only three colors: black, grey and white. The base material is represented as white, the
reinforcements objects as black and the grey color represents voxels that due to the
low contrast of the image aren´t yet classified as belonging to the base material or to
the reinforcements. The main goal of hysteresis is to eliminate the grey voxels. The
hysteresis is implemented following the majority color of the neighbor’s voxels. The
ImageLabeling segments the image labeling each particle with a unique identifier.
This Labeling allows the characterization of each reinforcement object.

In Fig. 4 we present a simplified declaration of the Segmentation HModule includ-
ing the virtual method hexecute. The method begins by reading the tomographic im-
age from the input port of the module. After reading, the map parallel pattern is used
to apply the OpenCL kernel to all the voxels of the 3D image. After, the result image
is sent to the output port of the module.

class Segmentation:public HModule{

void hexecute() {

 hrte_data_handle img;

 get_input_hrte_handle(…,img,…);

...

 hrte_task_map(…,img,img,…);

 send_output_hrte_handle(…,img);

 }

__kernel void Segmentation (…){

 BYTE value;

 value=bk[INDEX(x,y,z,nx,ny)];

 if(value<=min) value=BLACK;

 else if(value>max) value= WHITE;

 else value=GREY;

 bkO[INDEX(x,y,z,nx,ny)]=value;

}

Fig. 4. Definition of SCIRun Segmentation HModule and the OpenCL kernel used

Fig. 5 presents the PSE network used in the experiment; Fig. 6 contains a table
comparing the execution times of two networks built using the same approach de-
scribed in section 3: the 3rd column corresponds to a network where modules don’t
use HRTE support while the 4th column shows the execution time for the same ker-
nels wrapped as HModules.

As presented, the version of the visual program that uses HRTE reduces the execu-
tion time up to 70% to that one which uses directly OpenCL.

5 Conclusions and future work

In this paper we presented HRTE which aims to ease the development of applications
that use parallelism to tackle computational problems characterized by big needs in
computational power and processing of big volumes of data. Our target is to help
scientists and engineers that are not parallel processing specialists to develop modules
for Problem Solving Environments toolkits that make an efficient exploitation of
desktop computers equipped with accelerators.

Fig. 5. Network to process CT raw images
allowing the adequate objects identification

Fig. 6. Evaluations times of the network
executed with and without HRTE support

image size Partitions OpenCL HRTE

1 59.6 57.2

2 64.8 69.4

4 66.3 70.1

1 218.6 175.7

2 226.0 172.0

4 228.1 180.9

1 709.9 512.9

2 701.0 527.1

4 725.1 532.1

1 1717.2 1193.4

2 1724.4 1226.1

4 1732.6 1240.8

1 3266.7 2323.6

2 3274.5 2383.9

4 3261.2 2403.9

1 5986.5 4297.8

2 5984.0 4381.0

4 6018.9 4424.7

1 10195.3 8255.1

2 10209.3 8384.7

4 10182.3 8466.8

100

200

300

400

500

600

700

As far as we know, this effort to create a framework allowing the integration in
Problem Solving Environments toolkits of modules that can have different implemen-
tations and communicate efficiently by optimizing the data transfers is original. The
results obtained in our prototype using SCIRun and StarPU, assessed through a realis-
tic 3D image processing are promising in terms of performance and also regarding the
ease of development of new modules. The experiments described gave us valuable
insights to further developments of our research efforts.

Acknowledgements. FCT MCTES and NOVA LINCS UID/CEC/04516/2013. The
Polytechnic Institute of Lisbon (IPL) supports the 1st author as a doctoral student.

References

1. Parker, S.G., Johnson, C.R.: SCIRun: A Scientific Programming Environment for Computa-
tional Steering. In: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing.
Supercomputing ’95, New York, NY, USA, ACM (1995)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures. Concurr. Comput. : Pract. Ex-
per. 23(2) (February 2011) 187–198

3. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns for Effi-
cient Computation. 1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2012)

4. Khronos: OpenCL. https://www.khronos.org/opencl/ (2016)

5. Hwu, W.M.W., ed.: Heterogeneous System Architecture: A New Compute Platform Infra-
structure. Morgan Kaufmann Publishers Inc. (2016)

6. Diamos, G., Yalamanchili, S.: Harmony: An Execution Model and Runtime for Heterogene-
ous Many Core Systems. In: HPDC’08, Boston, Massachusetts, USA, ACM (June 2008)

7. Rossbach, C.J., Currey, J., Silberstein, M., Ray, B., Witchel, E.: PTask: Operating System
Abstractions to Manage GPUs as Compute Devices. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. SOSP ’11, New York, NY, USA, ACM
(2011) 233–248

8. Peterson, J., Hallock, M., Cole, J., Luthey-Schulten, Z.: A problem solving environment for
stochastic biological simulations. In: Proceedings of the 3rd Workshop on Python for High-
Performance and Scientific Computing. (2013)

9. Miller, M., M.C.D.J..J.C.: Grid-Enabling Problem Solving Environments: a Case Study of
SCIRun and NetSolve. In: Proceedings of HPC 2001. (April 22-26 2001) 98–103

10. Leeser, M., Yablonski, D., Brooks, D., King, L.S.: The Challenges of Writing Portable, Cor-
rect and High Performance Libraries for GPUs. SIGARCH Comput. Archit. News 39(4)
(December 2011) 2–7

11. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Accelerating
Code on Multi-Cores with FastFlow. In: Proceedings of the 17th international conference on
Parallel processing - Volume Part II. Euro-Par’11, Berlin, Heidelberg, Springer-Verlag
(2011) 170–181

12. Cadavez, T., Ferreira, S.C., Medeiros, P., Quaresma, P.J., Rocha, L.A., Velhinho, A., Vi-
gnoles, G.: A Graphical Tool for the Tomographic Characterization of Microstructural Fea-
tures on Metal Matrix Composites. International Journal of Tomography & Statistics
14(S10) (2010) 3–15

