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Abstract. Heterogeneous architectures encompassing traditional CPUs with 
two or more cores, GPUs and other accelerators like the Intel Xeon Phi, are 
available off the shelf at an affordable cost in a desktop computer. This paper 
describes work towards the definition, implementation and assessment of an 
environment that will empower scientists and engineers to develop and run their 
demanding applications in such personal computers.  

We describe HRTE (Heterogeneous Runtime Environment) that allows the 
construction of dedicated problem solving environments (PSE) taking ad-
vantage of those powerful and local processing elements, thus avoiding the use 
of remote machines through resource managers that introduce large latencies. 
HRTE is tailored to the communication and execution patterns of a PSE, effi-
ciently mapping them to the heterogeneous architecture described. We also de-
veloped an API that eases the development of modules (HModules) that support 
multiple parallel implementations and are easily integrated in a traditional PSE. 

HRTE functionality and performance and the API used to build HModules 
are assessed in the construction of a PSE in the area of Materials Science.  

Keywords: Heterogeneous architecture, GPU, PSE (Problem Solving Envi-
ronment), Runtime environment, accelerator, OpenCL 

1 Introduction 

Scientists have been conducted their research using increasing computational power 
to run their simulation models, to analyze large experimental data, and to compare 
observed and predicted data. The exploitation of the parallel hardware that supports 
the required levels of performance is too complex to one that is not a computer sci-
ence expert. This complexity of hardware, middleware, software versions and stand-
ards must be hidden from the user. The objective is that an expert in a specific science 
could define his model or simulation without worrying about the runtime environ-
ment. 

Problem solving environments (PSE) are integrated environments for solving a tar-
get class of problems in an application domain. Typically, they encapsulate the state 
of the art algorithms and problem solving strategies through an easy interface in a 



way that an expert in the application domain could run his model without specialized 
knowledge of the underlying computer hardware or software. Several open source 
frameworks for building PSEs exist, namely OpenDX, Voreen and SCIRun [1]. 

PSE environment offers the possibility of using building blocks from a library and 
interconnecting them in a network of modules that supports a dataflow model. The 
runtime of the PSE toolkit supports the dataflow between modules, the visualization 
of the intermediate and final results, as well as the modification of some parameters 
during the execution (steering computation). The network of modules can incorporate 
domain specific libraries such as numeric computation and visualization.  

A PSE provides a diverse set of modules with specific functions and the interface 
allows the user to build easily a network of modules. The execution of this network 
by the PSE runtime performs the processing steps needed to achieve the goal of the 
user. In each moment, the PSE scheduler determines the subset of modules that need 
to be executed according to data stream dependencies.  

The runtime environments of PSEs need to support high requirements of computa-
tional power. This computational power is typically supported by cluster machines or 
even through the grid infrastructure. However, the use of remote parallel processing 
platforms implies the submission of requests through batch schedulers that introduce 
intolerable latencies for interactive use. A change in the technologies used for execut-
ing PSE modules is necessary in order to achieve a significant reduction of the pro-
cessing times combined with small latencies that allows an interactive use by users. 
One promising way to achieve the above stated goal is through the exploitation of the 
heterogeneous multi-core architectures present in current desktop computers. 

Thereby it is possible to develop new modules that take advantage of multiple CPU 
using frameworks as PThreads or OpenMP. For the same reason the operation of 
other processing units (PU), such as GPUs, can be carried out by the individual mod-
ules using frameworks like NVIDIA CUDA, OpenCL, etc. Therefore there is no ob-
stacle in develop a module to take advantage of this type of hardware. These PUs are 
also known as accelerators and can share the main memory of the main processor 
(CPU) or having a private addressing space. In this work we used GPUs with its own 
separate address space. These types of PUs causes the module to explicitly copy the 
data into the memory of the PU, submit the code (kernel) to be executed, and finally 
copy of the data back to the main system memory. 

The authors of [2] claim that in many cases the coordinated use of all the PUs of a 
heterogeneous architecture allows performance gains when a comparison with a ho-
mogeneous solution is performed. The programmer could implement modules target-
ing the most suitable hardware in mind, using a specific programming model and/or 
specific programming libraries. 

To deal with the diversity of modules used for a given goal, we propose HRTE 
(Heterogeneous Runtime Environment) to support the execution of PSE tasks over the 
heterogeneous hardware available on a single desktop computer. HRTE has two main 
parts that correspond to the two main contributes of this work: 

─ Simplifying the development of new modules. HRTE offers the notion of Heteroge-
neous Module (HModule) supporting several implementations for each type of PU 
allowing it to run on multiple hardware architectures. Support of transparent man-



agement of data copy between main memory and memory of the PUs is also in-
cluded. The development of HModules is simplified through the availability of 
methods that implements map and stencil parallel control patterns [3] over HRTE. 

─ Optimizing the execution of the of module network: HRTE supports efficient access 
to large volumes of data flowing between modules in a complex memory hierarchy 
(including multi-core CPUs, GPUs and other kinds of PUs). This data flow optimi-
zation between HModules is achieved through the minimization of the number of 
data transfers between CPU and PUs memories, taking advantage of the current lo-
cation of the data. 

Related work. Several research efforts that allow the exploitation of heterogeneous 
architectures for building efficient applications have been successful: OpenCL [4], 
HSA [5], StarPU [2], Harmony [6], and PTask [7]. Regarding the convergence of 
such efforts and PSE toolkits most of the projects have targeted clusters and grids 
[8,9]. Several references exist regarding the use of GPU-enabled modules in PSEs 
[10]. Parallel structured programming projects like FastFlow [11] address both heter-
ogeneous architectures and support of dataflow between components (pipeline pat-
tern).  

Paper organization. This paper is organized as follows. We begin by describing the 
characteristics and organization of HRTE in Section 2, followed by the presentation 
of some relevant aspects of the current implementation of HRTE using SCIRun and 
StarPU in Section 3. In section 4 we present a case study, namely the application of 
HRTE in the implementation of a PSE in the area of Materials Science. Finally we 
present the conclusions and current work in Section 5. 

2 HRTE Organization 

A PSE toolkit provides modules that can be interconnected with other modules in a 
dataflow approach. Each module reads its data from inputs, executes an algorithm and 
generates its outputs to be sent to other modules. HRTE introduces a new type of 
module (HModule). These modules allow the execution of an algorithm in several 
platforms (hardware and software). These extensions should maintain compatibility 
with original features of PSE. Therefore all existing modules can still be used and can 
be interconnected with the new HModules (see Fig. 1).  

In most PSEs large volumes of data are transferred between modules. The efficient 
support of these huge data transfers and the optimization of its sharing between mod-
ules must be tailored to an environment where a hierarchy of levels of memory exists; 
if we consider that some of the modules will be offloaded to an accelerator this im-
plies that the data must also be transferred to and from the accelerator’s memory. The 
transfer costs must be considered by the runtime environment, otherwise the gains of 
using the accelerator can be hidden by the overheads intrinsic to data transfer between 
separate components of the memory hierarchy. Another issue is related with the lim-
ited memory in some accelerators, imposing that the accelerator’s memory may not 
accommodate all the data thus implying its partition. Therefore, HRTE must also 



extend the PSE’s dataflow between HModules in order to send additional information 
about the locality and partition mode of the data transferred.  

 

Fig. 1. A PSE environment with standard modules and the new HModule in same application 

To be able to incorporate HModules in an existing PSE framework one must modify 
the PSE code to handle the execution of new HModules and the dataflow between 
both types of modules. The HRTE organization allows the minimization of changes of 
PSE code thus easing the integration of HRTE in different PSE toolkit. These modifi-
cations allow the definition of a new HModule by defining the following methods: 

A dynamic library supports all the functionalities of the runtime and is used by the 
HModule code. It supports the concept of a heterogeneous function allowing, in the 
same module, the availability of different implementations. Next, we give an example 
of adding an OpenCL implementation to a HModule: 

void hrte_HFunction_add_opencl_code( 

hrte_HFunction *hf,char 

*kernelName,char *clFile); 

Register an OpenCL kernel imple-
mentation indicating the filename 
containing the OpenCL code. 

The library also supports data management allowing data registration, data partition 
(with and without ghost zones). The registration of the data in HRTE is done using 
the functions below: 

void hrte_matrix3d_register 

(hrte_data_handle *handle,void 

*ptr,uint32_t nx,uint32_t ny,uint32_t 

nz,size_t elemsize); 

Register a 3D matrix. 

void hrte_matrix3d_set_partitions 

(hrte_data_handle handle,int n); 
Set number of partitions on data. 

void getInputs() Extract data from input ports and register it.  

void setOutputs() Generate the data to the output ports of the module.  

void hexecute() Definition of actions performed by the HModule. 



To simplify the definition of a HModule map and the stencil parallel control patterns 
[3] are available as presented here: 

void hrte_task_map(hrte_HFunction *hf, 

hrte_data_handle in,hrte_data_handle 

out,hrte_HFunctionArgs *ha); 

Map pattern will apply the hetero-
geneous function to every element 
of the input data. 

void hrte_task_stencil(hrte_HFunction 

*hf, hrte_data_handle 

in,hrte_data_handle out); 

Stencil pattern will apply the heter-
ogeneous function to every element 
and its neighbors. 

3 Current HRTE Prototype 

At present our prototype has been developed using SCIRun [1] as the PSE frame-
work. As described in previous section we need to extend the SCIRun Module and the 
dataflow between modules to integrated HRTE and augmented SCIRun to support 
HModules. The definition of a new module in SCIRun implies the definition of a new 
C++ class extending from the Module class and the definition of the virtual method 
execute that is called when the module is executed. The optional graphical user inter-
face associated with the module is defined in TCL script language and finally the 
specification of the input and output ports are made in a XML file. The dataflow that 
interconnect modules was extended to include additional information when we have 
HModules interconnected.  

All the HRTE runtime described in section 2 is supported by StarPU [2]. HModules 
are mapped to tasks and codelets; module input and output uses StarPU block man-
agement interface. The modifications made to the PSE dataflow part and the use of 
StarPU allows significant performance improvements when executing a sequence of 
HModules. This claim had been validated through the use of a network of HModules 

 

Fig. 2. Network used to evaluate the perfor-
mance of dataflow between modules 

Fig. 3. Comparison of total execution times 
with and without HRTE support 

  
image size Partitions OpenCL HRTE
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that runs an OpenCL kernel (Fig. 2) that only outputs the data received without any 
processing. The evaluation used a machine with an Intel Xeon CPU E5506 at 
2.13GHz, 12 GB of RAM and two NVIDIA Tesla C1060. The operating system is 
Ubuntu 12.04 x86_64. The GPUs driver is the NVIDIA 340.29. The GPU SDK is 
CUDA 6.5.14 (OpenCL 1.1). PSE is SCIRun  4.7 and StarPU is 1.2.0rc2. 

In Fig. 3 we compare the execution times of this network with a similar one without 
HRTE (same OpenCL kernel). Optimization of dataflow between HModules allows a 
reduction in execution time up to 33% over the version that does not use HRTE. 

4 A Case Study in Materials Science 

In the field of Materials Science, research on composite materials (comprising two 
distinct materials, where one constitutes a base matrix and the other acts as rein-
forcement) has a growing relevance in transportation and energy areas [12]. 

To forecast the characteristics of a new material, it is vital to characterize the rein-
forcement’s population regarding aspects, such as position, size and orientation of the 
particles. X-ray computed tomography (X-ray CT) images are used for the characteri-
zation activities. The task of processing and analysing such data is a complex one: not 
only there is a huge volume of data to be processed but also there are noise and arte-
facts that must be removed; low contrast between the matrix and the reinforcement 
particles, due to small density difference makes this processing computing intensive.  

Support of this processing and its easy handling by a non IT specialist requires an 
environment that allows the definition of a sequence of computational processing 
steps as well as its parameterization values in an interactive and real time way. In this 
setting, the construction of a PSE to the characterization of reinforcement population 
in 3D tomographic data is an opportunity for assessing the functionality and perfor-
mance of HRTE. The images obtained by CT need processing to eliminate noise and 
allow the detection of boundaries between the base material and the reinforcement 
particles.  

We developed three HModules to process the tomographic 3D image. The modules 
perform in sequence bi-segmentation, hysteresis and ImageLabeling operations. 
Bi-segmentation transforms the CT 3D original greyscale image to an image with 
only three colors: black, grey and white. The base material is represented as white, the 
reinforcements objects as black and the grey color represents voxels that due to the 
low contrast of the image aren´t yet classified as belonging to the base material or to 
the reinforcements. The main goal of hysteresis is to eliminate the grey voxels. The 
hysteresis is implemented following the majority color of the neighbor’s voxels. The 
ImageLabeling segments the image labeling each particle with a unique identifier. 
This Labeling allows the characterization of each reinforcement object. 

In Fig. 4 we present a simplified declaration of the Segmentation HModule includ-
ing the virtual method hexecute. The method begins by reading the tomographic im-
age from the input port of the module. After reading, the map parallel pattern is used 
to apply the OpenCL kernel to all the voxels of the 3D image. After, the result image 
is sent to the output port of the module.  



class Segmentation:public HModule{ 

void hexecute() { 

   hrte_data_handle img; 

   get_input_hrte_handle(…,img,…); 

... 

   hrte_task_map(…,img,img,…); 

   send_output_hrte_handle(…,img); 

 } 

__kernel void Segmentation (…){ 

  BYTE value;  

  value=bk[INDEX(x,y,z,nx,ny)]; 

  if(value<=min) value=BLACK; 

  else if(value>max) value= WHITE; 

  else value=GREY; 

  bkO[INDEX(x,y,z,nx,ny)]=value; 

} 

Fig. 4. Definition of SCIRun Segmentation HModule and the OpenCL kernel used 

Fig. 5 presents the PSE network used in the experiment; Fig. 6 contains a table 
comparing the execution times of two networks built using the same approach de-
scribed in section 3: the 3rd column corresponds to a network where modules don’t 
use HRTE support while the 4th column shows the execution time for the same ker-
nels wrapped as HModules. 

As presented, the version of the visual program that uses HRTE reduces the execu-
tion time up to 70% to that one which uses directly OpenCL. 

5 Conclusions and future work 

In this paper we presented HRTE which aims to ease the development of applications 
that use parallelism to tackle computational problems characterized by big needs in 
computational power and processing of big volumes of data. Our target is to help 
scientists and engineers that are not parallel processing specialists to develop modules 
for Problem Solving Environments toolkits that make an efficient exploitation of 
desktop computers equipped with accelerators. 

  

Fig. 5. Network to process CT raw images 
allowing the adequate objects identification 

Fig. 6. Evaluations times of the network 
executed with and without HRTE support 

image size Partitions OpenCL HRTE

1 59.6 57.2

2 64.8 69.4

4 66.3 70.1

1 218.6 175.7
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1 10195.3 8255.1

2 10209.3 8384.7

4 10182.3 8466.8
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As far as we know, this effort to create a framework allowing the integration in 
Problem Solving Environments toolkits of modules that can have different implemen-
tations and communicate efficiently by optimizing the data transfers is original. The 
results obtained in our prototype using SCIRun and StarPU, assessed through a realis-
tic 3D image processing are promising in terms of performance and also regarding the 
ease of development of new modules. The experiments described gave us valuable 
insights to further developments of our research efforts. 
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