
Implementation and Evaluation of
NAS Parallel CG Benchmark on GPU Cluster

with Proprietary Interconnect TCA

Kazuya Matsumoto1, Norihisa Fujita2,
Toshihiro Hanawa3, and Taisuke Boku1,2

1 Center for Computational Sciences, University of Tsukuba
2 Graduate School of Systems and Information Engineering, University of Tsukuba

3 Information Technology Center, The University of Tokyo

Abstract. We have been developing a proprietary interconnect technol-
ogy called Tightly Coupled Accelerators (TCA) architecture to improve
communication latency and bandwidth between accelerators (GPUs) over
different nodes. This paper presents a Conjugate Gradient (CG) bench-
mark implementation using the TCA and results of performance evalu-
ation on the HA-PACS/TCA system, which is a proof-of-concept GPU
cluster based on the TCA concept. The implementation is based on the
CG benchmark in NAS Parallel Benchmarks, and its parallelization is
achieved by a two-dimensional decomposition of matrix data. The TCA
utilization improves the communication performance compared with the
implementation with MPI/InfiniBand utilization for small size bench-
mark classes. This study also shows that the CG implementation with
the two-dimensional decomposition is more suitable for the TCA utiliza-
tion than a CG implementation with a one-dimensional decomposition
to make use of the interconnect.

1 Introduction

Currently, GPU clusters are widely used as high performance computing systems.
A problem of GPU clusters is that the communication speed between multiple
compute nodes is not fast enough compared to its high computation speed. In
order to address this problem, we have been researching the Tightly Coupled
Accelerators (TCA) architecture [2]. The TCA is a technology on a proprietary
interconnect network to enable direct communication between accelerators over
different nodes.

We have conducted the basic performance evaluation of the TCA [4, 1]. In
[4], a Conjugate Gradient (CG) method has been implemented by utilizing
allgather and allreduce collective communications with TCA’s communication
functions. The parallelization of the CG implementation is accomplished by a
one-dimensional decomposition of matrix data. Results of the performance eval-
uation shows that the CG method implementation using TCA outperforms the
implementation using MPI/InfiniBand for sparse matrices whose matrix (prob-
lem) size is nine thousand or smaller; however, the communication performance



of TCA tends to become lower when either or both of the target matrix sizes
and the number of utilizing processes are larger.

In the present study, we evaluate a different CG method implementation with
the TCA utilization. The CG implementation is based on the CG benchmark in
NAS Parallel Benchmarks. We apply a two-dimensional decomposition of matrix
as the enhanced implementation from [4], and present results of performance
evaluation on the HA-PACS/TCA GPU cluster. Additionally, this study presents
communication performance differences between the CG implementation with
the two-dimensional decomposition and the one-dimensional decomposition.

2 Tightly Coupled Accelerators Architecture

This section briefly explains the Tightly Coupled Accelerators (TCA) archi-
tecture (see [2, 1] for detailed information on the TCA). The TCA is a novel
technology of proprietary interconnect for PC clusters. The PCI Express Adap-
tive Communication Hub ver. 2 (PEACH2) is a prototype implementation of the
TCA architecture. We can construct a cluster system by connecting the PEACH2
boards with each other. The communication using the PEACH2 is conducted
only with the PCIe protocol, and the overhead time for protocol conversion,
which is required in the InfiniBand, is eliminated. Consequently, the PEACH2
enables data communication with extremely low latency. The PEACH2 provides
two types of data communication functions: PIO and DMA. In the PIO com-
munication, the data is transferred to a remote node by the CPU’s remote write
operation. The latency of PIO is very small, and, as a result, the PIO is useful to
transfer short messages. The DMA function is achieved by the DMA controller,
which has four DMA channels. While the latency of DMA is larger than that of
PIO, the DMA demonstrates higher maximum bandwidth performance.

The HA-PACS (Highly Accelerated Parallel Advanced system for Computa-
tional Sciences) is a GPU cluster system at the Center for Computational Sci-
ences, University of Tsukuba. The HA-PACS/TCA is a proof-of-concept system
of TCA architecture concept and a performance evaluation test-bed of PEACH2
board. The HA-PACS/TCA contains the PEACH2 as an interconnect adapter
in addition to a commodity InfiniBand interconnect. Table 1 shows the speci-
fication of HA-PACS/TCA. The HA-PACS/TCA consists of four sub-clusters.
Each sub-cluster is composed of 16 compute nodes. The 16 nodes are connected
by the PEACH2 and configure a 2× 8 torus network. Note that the 64 nodes of
HA-PACS/TCA are connected also by two ports of InfiniBand QDR in a fat-tree
configuration with full bisection bandwidth.

3 Implementation

The CG benchmark in NAS Parallel Benchmarks (NPB) is originally written in
Fortran. Though several CG benchmark studies on GPUs have been conducted
[3, 8], there is no available implementations written in MPI and CUDA to our
knowledge. Because of the fact, in the present study, we modify the MPI version



Table 1. HA-PACS/TCA system configuration

Node configuration

Motherboard SuperMicro X9DRG-QF
CPU Intel Xeon E5-2680 v2 2.8 GHz × 2 (IvyBridge 10 cores / CPU)
Memory DDR3 1866 MHz × 4 ch, 128 GB (=8 × 16 GB)
Peak performance 224 Gflops / CPU

GPU NVIDIA Tesla K20X 732 MHz × 4
(Kepler GK110 2688 cores / GPU)

Memory GDDR5 6 GB / GPU
Peak performance 1.31 Tflops / GPU

Interconnect InfiniBand: Mellanox Connect-X3 Dual-port QDR
TCA: PEACH2 board (Altera Stratix-IV GX 530 FPGA)

System configuration

Number of nodes 64
Interconnect InfiniBand QDR 108 ports switch × 2 ch
Peak performance 364 Tflops

� �N

N

N/2

� �

� �

N

N

N/2

N/2 � � � �

� � � �

N

N

N/4

N/2

� � � �

� � � �

	 
 �� ��

�� �� �� ��

N

N

N/4

N/4

P = 2 P = 4 P = 8 P = 16

Fig. 1. Process distribution by two-dimensional decomposition of matrix data. The
number in each rectangular represents its process rank id.

of CG benchmark in NAS 3.3.1 such that the main computation part (conj grad

function) is written in C language and CUDA, and its inter-node data communi-
cations are conducted with the TCA/PEACH2. Let us denote a linear equation
system as Ax = b, where A is an N ×N symmetric positive definite matrix, and
both x and b are a vector with N elements in the following.

The modified implementation uses the identical data distribution and com-
munication pattern to the original MPI version. The parallelization of CG bench-
mark is achieved by a two-dimensional decomposition of the matrix A and con-
formable distribution of vectors. When we define the number of processes as
P , the matrix A is two-dimensionally decomposed by P = Pr × Pc processes.
Based on the decomposition, each process contains (N/Pr)× (N/Pc) sub-matrix
of A and vectors with N/Pc elements. Figure 1 shows the process distribution
by two-dimensional decomposition of matrix A data for P = 2, 4, 8, 16.

Almost all of computations in the implementation are carried out by GPUs.
While we implement the sparse-matrix vector multiplication (SpMV) by our-
selves, our CG implementation utilizes the NVIDIA’s CUBLAS library for vec-



tor dot product (DOT) and vector addition (AXPY) operations. Note that the
computation part is not tuned so deeply since this study focuses on performance
evaluation of data communication.

Three kinds of data communication are required in the implementation. The
first required communication is to send vector data for obtaining the product of
SpMV after the local SpMV computation on a GPU in each node. The communi-
cation is conducted among Pc processes in the same process row in a binary tree
fashion, and thus

√
Pc communication steps are needed (each step needs to send

8N/Pc Bytes of vector data in double precision). The second communication is
to send a scalar (8 Bytes) value to compute the sum of local product by the
DOT computation. This communication is also made among the Pc processes
and

√
Pc steps are required. The third communication is to send 8N/Pc Bytes

of a vector for data exchange. In the following, let us name the first, second
and third communication as COMM SpMV, COMM DOT and COMM EXCH,
respectively.

The COMM DOT is scalar data communications between CPU memories of
different processes and the latency for issuing communication operations occu-
pies almost all of its communication time. The COMM SpMV and COMM EXCH
are block data communications of 8N/Pc Bytes between different GPU memories
and a communication bandwidth is important for high performance communica-
tion as well as the issue latency. Considering the communication characteristics,
we implement the COMM SpMV and COMM EXCH with the DMA commu-
nication function of TCA/PEACH2 and implement the COMM DOT with the
PIO function. Note that, as shown in Figure 2, the DMA communication is
faster than the PIO communication when message sizes are larger than 128
Bytes, which are smaller than sizes for the required block communications in
any problem classes of CG benchmark.

The TCA/PEACH2 configures a 2 × 8 torus network on a sub-cluster of
HA-PACS/TCA; thus, a way of process (node) mapping also affects the commu-
nication performance. As can be seen from Fig. 1, the CG implementation with
two-dimensional decomposition requires communication among Pc processes (4
processes at most when we utilize up to 16 nodes). We use a node mapping
shown in Figure 3. This mapping does not cause message data contentions and
collisions within the TCA/PEACH2’s communication network on a sub-cluster
even when P = 16 cases.

4 Performance Evaluation

We conduct performance measurements on a sub-cluster of the HA-PACS/TCA.
A single GPU and a single CPU socket are utilized per node4. For comparison
with the implementation using TCA/PEACH2, this section also presents the

4 This is because using two or more sub-clusters entails a hybrid utilization of the
TCA/PEACH2 and MPI/IB, and because two or more GPUs usage requires ad-
ditional considerations to use the TCA/PEACH2 effectively. Both of the hybrid
utilization and the multi GPU usage are among our future work.



�

��

���

� ��� ���� �����

�

�

�

�

�

�

�

�

�

	




�������������	
����

	
����	
�

��	��
��	���
���

	
����	
�

��	��
��	�������

	
����	
����
�����

�
�����
�

��	��
��	�������

�
�����
�

��
�����

Fig. 2. Ping-pong communication perfor-
mance between two neighboring nodes on
the HA-PACS/TCA.

� �

��

�

� �

�� ��

����

�� ��

	 


�

Fig. 3. Node mapping optimized
for CG benchmark implemen-
tation on a sub-cluster of HA-
PACS/TCA. Circles represent
compute nodes, lines between
circles represent data links, and
the number corresponds to its
process rank id.

performance of an implementation using MPI/InfiniBand (MPI/IB) for inter-
node communications. We use the MVAPICH2 GDR 2.1a (MV2GDR) MPI li-
brary implementation [6]. As with the TCA/PEACH2, the MV2GDR utilizes the
GPUDirect for RDMA (GDR) technology [5] for direct communication between
GPUs. Note that the theoretical peak bandwidth of TCA/PEACH2 (PCIe Gen2
x8) is twice lower than that of MPI/IB (dual-rail InfiniBand QDR5); therefore,
the implementation using TCA/PEACH2 is outperformed when message sizes
become large. On the condition where the program is compiled by Intel C com-
piler 15.0.2 with MV2GDR 2.1a and CUDA 6.5 usage, the TCA/PEACH2 is
faster for message sizes up to 64 KB than the MPI/IB in terms of the ping-pong
communication performance as shown in Fig. 2.

In the CG benchmark, the problem sizes (CLASS) and the number of pro-
cesses (P ) can be designated. This section presents results of performance evalu-
ations for CLASS=S, W, A, B and P = 2, 4, 8, 16. The problem (matrix/vector)
size N is 1,400 for CLASS=S, 7,000 for CLASS=W, 14,000 for CLASS=A,
and 75,000 for CLASS=B. We measure the consuming time for each compu-
tation/communication operation in the conj grad program function. Figure 4
shows the measured time breakdown on average time of ten times calls to the
function. Note that this is the breakdown of process rank 0 and the communica-
tion time is the communication wait time. A single call of the conj grad function
includes 26

√
Pc of COMM SpMV, 52

√
Pc of COMM DOT, 26 of COMM EXCH,

26 of SpMV, 52 of DOT, and 76 + 26
√
Pc of AXPY operations. In Fig. 4, the

performance is shown for the implementation in Fortran (original NPB-MPI

5 The theoretical peak bandwidth of the dual-rail InfiniBand QDR is 8 GB/s, which
is equivalent to that of PCIe Gen3 x8.



�

�����

�����

�����

�����

�����

�����

	����

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�


�� 
�� 
�� 
���



�

�

�

�

�

�

�

�

�

�

�������

��������

�������

�������

��
�

���

����

������ ��!

�"#�$%

�

�����

�����

�����

�����

������

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	� �	� �	� �	��



�

�

�

�

�

�

�

�

�

�

�������

�

�����

������

������

������

������

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��� ��� ��	 ���




�

�

�

�

�

�

�

�

�

�

�������

������

������

�������

����

���

���

���������

� !�"#

�

������

������

������

�������

�������

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�




�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	
� 	
� 	
� 	
��



�

�

�

�

�

�

�

�

�

�

�������

Fig. 4. Time breakdown on a single conj grad function call of CG benchmark. In
each figure, the performance (time in microsecond) is shown for the implementation in
Fortran (original NPB-MPI code), C language, CUDA with TCA/PEACH2 commu-
nication, and CUDA with MPI/IB communication. The upper plot results for several
results in Fortran and C, such as CLASS=B & P=2 case, are cut for simplicity.

�

�����

�����

�����

�����

��	 
�� ��	 
�� ��	 
�� ��	 
��

�� �� �� ���

�
��

�
��
�
��
	


�������

	��������

	��������

	���

���

��
�

����� 
�

������

������

������

������

��	 
�� ��	 
�� ��	 
�� ��	 
��

�� �� �� ���

�
��

�
��
�
��
	


�������

Fig. 5. Time breakdown of CG implementation with one-dimensional decomposition

code), C language, CUDA with TCA/PEACH2 communication, and CUDA with
MPI/IB communication.

The Fortran implementation is faster than the C implementation (similar
performance results were reported for the NPB-LU benchmark by Pennycook et
al. [7]). Compared with the original Fortran implementation, the GPU/CUDA
usage for NPB implementation deteriorates the performance in several cases



(particularly in cases of smaller size class and larger number of processes utiliza-
tion). This is mainly due to that the GPU usage brings bigger overheads for the
CUDA kernel invocations6 and for the inter-node communication call between
GPUs.

The TCA/PEACH2 utilization contributes the performance improvement
for the three small size classes (CLASS=S, CLASS=W, and CLASS=A) com-
pared with the MPI/IB utilization. Especially, the communication performance
is 3.00 times higher in the case CLASS=S with P = 16, and the overall perfor-
mance including the computation time and communication time is 1.24 times
higher. The large performance improvement by TCA/PEACH2 is derived from
improvements of COMM SpMV and COMM DOT. The communication time is
2.42 times shorter for COMM SpMV and 4.72 times shorter for COMM DOT in
this case. In the case CLASS=A with P = 16, the communication performance
using the TCA/PEACH2 is 1.44 times higher and the overall performance is
1.12 times higher. The performance of COMM DOT with TCA/PEACH2 is
higher in all four size cases since the communication latency mostly decides the
performance for the scalar data communication. However, the TCA/PEACH2
is not always effective. The performance for CLASS=B is almost same. In the
CLASS=B case, the COMM EXCH is the main performance bottleneck.

To see how the performance is different between the CG benchmark imple-
mentation with two-dimensional decomposition (2D-CG) in the present study
and the CG implementation with one-dimensional decomposition (1D-CG) in
our previous study [4], we additionally measure the performance of 1D-CG im-
plementation on the equivalent condition and cases (1D-CG is implemented by
ourselves and not in the NAS Parallel Benchmarks). Figure 5 shows the mea-
sured time breakdown of the 1D-CG for matrices corresponding CLASS=S and
CLASS=B. The 1D-CG utilizes allgather and allreduce collective communica-
tions (see [4] for implementation details). All P processes are involved for both
the collective communications in 1D-CG, whereas Pc processes are involved at
most in 2D-CG. Since the network topology of TCA/PEACH2 is 2×8 torus net-
work, collisions within the communication network cannot be avoided for P = 16
cases in 1D-CG. As shown in Fig. 5, the communication time in 1D-CG becomes
larger when P increases. In addition, the largest message size of 1D-CG is larger
than that of 2D-CG for P = 8, 16 cases (the size is 8N/2 Bytes in 1D-CG and
8N/Pc in 2D-CG). This fact is disadvantage for large matrix sizes (CLASS=B)
and relative performance differences between TCA/PEACH2 and MPI/IB is
large compared with 2D-CG implementation. In general, the message size of
each communication in 2D-CG is shorter than or equal to that in 1D-CG for
corresponding communication. The performance degradation with shorter mes-
sage size is serious in MPI/IB while TCA/PEACH2 provides a good performance
thanks to its very small latency. Thus, the combination of such short messages
and avoidance of message collision on the torus network of TCA/PEACH2 leads
this performance improvement on 2D-CG benchmark.

6 A CUDA kernel invocation at least takes 9.7 µsec, including the CUDA stream
synchronization time, in our measurement.



5 Conclusion

The present study has utilized the TCA/PEACH2 for an implementation of
NAS Parallel CG benchmark and conducted its performance evaluation on the
HA-PACS/TCA GPU cluster. Results of the performance evaluation show that
the CG implementation with the parallelization by a two-dimensional decom-
position of matrix data does not cause message data collisions within the com-
munication network of TCA/PEACH when processes are properly mapped to
nodes; and the present CG implementation is considered to be better suited for
the TCA/PEACH2 utilization than the previous CG method implementation
with a one-dimensional decomposition [4]. The performance improvement over
MPI/IB utilization is due to the very small latency of TCA/PEACH2. We will
continue researches on the TCA with the view that reducing the latency between
accelerators by direct communication is important for strong-scaling computing.

Acknowledgements. The present study was supported by the Japan Science
and Technology Agency’s CREST program entitled “Research and Development
of Unified Environment on Accelerated Computing and Interconnection for Post-
Petascale Era.” The authors would like to thank the Center for Computational
Sciences, University of Tsukuba for allowing us to use the HA-PACS/TCA sys-
tem as part of the interdisciplinary Collaborative Research Program.

References

1. Hanawa, T., Fujii, H., Fujita, N., Odajima, T., Matsumoto, K., Boku, T.: Evaluation
of FFT for GPU Cluster Using Tightly Coupled Accelerators Architecture. In: Proc.
Cluster 2015. pp. 635–641. IEEE (2015)

2. Hanawa, T., Kodama, Y., Boku, T., Sato, M.: Tightly Coupled Accelerators Ar-
chitecture for Minimizing Communication Latency among Accelerators. In: Proc.
IPDPSW 2013. pp. 1030–1039. IEEE (2013)

3. Lee, S., Vetter, J.S.: Early evaluation of directive-based GPU programming models
for productive exascale computing. In: Proc. SC ’12 (2012)

4. Matsumoto, K., Hanawa, T., Kodama, Y., Fujii, H., Boku, T.: Implementation of
CG Method on GPU Cluster with Proprietary Interconnect TCA for GPU Direct
Communication. In: Proc. IPDPSW 2015. pp. 647–655. IEEE (2015)

5. NVIDIA: NVIDIA GPUDirect (Accessed April 25, 2016),
https://developer.nvidia.com/gpudirect

6. Panda, D.K.: MVAPICH2-GDR (MVAPICH2 with GPUDirect RDMA) (Accessed
April 25, 2016), http://mvapich.cse.ohio-state.edu/overview/

7. Pennycook, S.J., Hammond, S.D., Jarvis, S.A., Mudalige, G.R.: Perfor-
mance Analysis of a Hybrid MPI/CUDA Implementation of the NAS-
LU Benchmark. SIGMETRICS Perform. Eval. Rev. 38(4), 23–29 (2011),
http://doi.acm.org/10.1145/1964218.1964223

8. Xu, R., Tian, X., Chadrasekaran, S., Yan, Y., Chapman, B.: NAS Parallel Bench-
marks for GPGPUs Using a Directive-Based Programming Model. In: Languages
and Compilers for Parallel Computing. LNCS, vol. 8967, pp. 67–81. Springer (2015)


