
The Design of Advanced Communication to
Reduce Memory Usage for Exa-scale Systems

Shinji Sumimoto1, Yuichiro Ajima1, Kazushige Saga1,
Takafumi Nose1, Naoyuki Shida1 and Takeshi Nanri2

1 Fujitsu Ltd. 4-1-1 Kamikodanaka 4-Chome, Nakahara-ku,
Kawasaki-city, Kanagawa, 211-8588, Japan.

E-mail: {sumimoto.shinji,aji,saga.kazushige, nose.takafumi, shidax}@jp.fujitsu.com
2 Kyushu University, 6-10-1 Hakozaki Higashi-ku, Fukuoka 812-8581 Japan.

E-mail: nanri@cc.kyushu-u.ac.jp

Abstract. Current MPI (Message Passing Interface) communication li-
braries require larger memories in proportion of the number of processes,
and can not be used for exa-scale systems. This paper proposes a global
memory based communication design to reduce memory usage for exa-
scale communication. To realize exa-scale communication, we propose
true global memory based communication primitives called Advanced
Communication Primitives (ACPs). ACPs provide global address, which
is able to use remote atomic memory operations on the global memory,
RDMA (Remote Direct Memory Access) based remote memory copy
operation, global heap allocator and global data libraries. ACPs are dif-
ferent from the other communication libraries because ACPs are global
memory based so that house keeping memories can be distributed to
other processes and programmers explicitly consider memory usage by
using ACPs. The preliminary result of memory usage by ACPs is 70MB
on one million processes.

1 Motivation

Many countries have been planning to develop exa-scale systems, and the Japanese
government has also announced to develop an exa-scale system by the end of
2020. Many core based systems will be used for the exa-scale system and the
number of cores will be in the 10 million class. We have to consider not only the
impacts of number of cores and nodes, but also that of the number of processes
on the system software stacks in this situation, and we are researching high per-
formance communication libraries that are able to be used for 10 million process
class parallel systems.

However, current communication libraries, such as Open MPI[1] and MPICH[2],
require larger memories in proportion to the number of processes, and, they can
not be used for exa-scale systems because they eventually exhaust the memories.
Therefore, memory usage of them must be dramatically reduced.

We propose Advanced Communication Primitives (ACPs) with global mem-
ory access and management functions to reduce memory usage by communica-

tion libraries. ACPs are aimed at achieving low-level communication primitives,
and be used to implement PGAS based languages on top of ACPs.

This paper is organized as follows, section 2 discusses memory usage issues
for Exa-scale systems. Section 3 proposes our approach of ACPs, and describes
global memory based communication design to reduce memory. Section4 shows
evaluation of ACPs, and section 5 discusses related work.

2 Memory Usage Issues for Exa-scale Systems

We measured and evaluated memory usage by Open MPI with an InfiniBand
network using DMATP-MPI[3] tool. InfiniBand interconnect has three types
of communication protocol, i.e., Reliable Connection (RC) with Receive Queue
(default and RC-RQ), RC with Shared Receive Queue (RC-SRQ), and Unreliable
Datagram (UD). Fig. 1 plots the results. The results show that memory usage
of Open MPI highly depend on communication protocols. Especially, RC-RQ
and RX-SRQ require higher amount of memory because they require arrays of
descriptors and buffers for messages for each destination.

Fig. 1. Memory Usage by Open MPI 1.4.5

Table 1. Estimated Memory Usage by Open MPI

of Procs RC-RQ RC-SRQ UD

100,000 56.23 3.33 0.29 GB

1,000,000 561.87 32.86 2.24 GB

10,000,000 5,618.22 328.17 21.75 GB

By extrapolating the data from Fig. 1, Open MPI memory usage by the exa-
scale system was estimated. Table 1 summarizes the estimated memory usage
by up to 10 million processes, where memory usage by RC-RQ on one million
processes is 561 GB and that by RC-SRQ is 32.9 GB. These results indicate that
the connection oriented communication protocol is not scalable in essentials as
described by Sumimoto et al.[4].

Table 1 also indicates that the MPI program on one million processes required
about 2.2 GB of memory per process even if the UD protocol was used. This also
indicates current MPI libraries usually allocate o(Number of Processes) amount
of memory to the MPI buffer and control structure.

We analyzed the reason and found that MPI Init function allocated memory
in proportion to the number of processes because each process had redundant
copies of information from the other processes’.

3 The Design of Advanced Communication for Exa-scale
Systems

To realize high performance communication for Exa-scale system, not only re-
duction of memory usage of communication library but also memory reduction
programing infrastructure is needed. This section discusses the design of ad-
vanced communication for Exa-scale systams.

3.1 Advanced Communication Primitves (ACPs) Design

As discussed in Section 2, MPI Init function allocates memory in proportion
to the number of processes bacause each process has redundant copies of infor-
mation from other processes’. To eliminate the redundant copies, such process
information should be located in the original process memory and accessed when
needed for exa-scale communication.

To realize an easy access to such distributed process data, we decided to in-
troduce global memory access scheme and global addresses which is able to use
an address pointer as same as address pointer in data structures in local mem-
ory. By providing the global memory access scheme instead of message passing,
communication library doesn’t have to prepare message buffers and descriptors,
and users can manipulate global memory pointers without considering the loca-
tion of the pointer. This means that user program can make and access globally
distributed data structures and doesn’t need redundant copy data.

To provide the global memory access scheme, communication library should
provide functions to handle global memory access, such as data copy, data hanle,
global memory allocation and global memory data library functions.

To realize the global memory access functions, we developed the Advanced
Communication Primitives(ACPs). ACPs provide global addresses, which are
able to use remote atomic memory operations on the global memory, and RDMA
based memory copy communication to effectively manipulate distributed struc-
ture. We chose RDMA based communication because it does not need an in-
termediate communication buffer such as message based communication and
modern interconnects such as Tofu and InfiniBand to support it.

The ACPs consist of basic layer (ACPbl) and middle layers which consist
of Communication Library (ACPcl) and Data Library (ACPdl), and all of the
functions are able to handle global address pointers as they are. Each process
on ACPs can individually register and unregister its local memory to the global
memory without inter-process synchronization. The primal data transfer func-
tion of the layer is a ’copy’ on the global memory. The initiator process for

Table 2. ACPbl Function Examples

Functions Description Functions Description

acp init() Initialization acp register memory() Memory Registration
acp finalize() Finalization acp unregister memory() Memory Un-registration
acp reset() Reset acp copy() Global memory copy
acp sync() Synchronization acp cas[48]() Atomic compare and swap
acp rank() Getting rank number acp swap[48]() Atomic swap operation
acp procs() Getting process Group acp complete() Waiting completion
acp query Query Local Address acp inquire() Checking completion
address()

the copy does not have to be the source nor the destination. The ’copy’ func-
tion is directly implemented by using RDMA when network hardware, such as
InfiniBand or Tofu Interconnect, has RDMA.

3.2 ACP Basic Layer: ACPbl

The basic ACP layer consists of an infrastructure, global memory management
(GMM), and global memory access (GMA) functions to provide RDMA based
memory copy communication, remote atomic operations, and initialize and fi-
nalize functions. It also provides fixed-size starter memory to exchange global
addresses among processes after ACPs are initialized. The size of the starter
memory can be used to change environment variables or argument options dur-
ing execution.

Current global address handles of ACPs are described as 64 bit unsigned
integer type data so that they can directly use hardware atomic operation. Pro-
grams with ACPs do not have to recognize whether global address data exist
on local memories or not. They only recognize them when directly accessing
data. ACPs provide a translation function from global addresses to local logical
memory addresses, and when the function fails, the data are on other process
memories and need to be copied from the global data to local memory to access
them.

Table 2 lists examples of ACPbl functions, where there are several infras-
tructure functions, and copy, compare and swap, swap, checking, and waiting
operation functions.

3.3 Communication and Data Libraries

ACPs are also comprised of two main categories of interfaces, i.e., communica-
tion (ACPcl) and data libraries (ACPdl[5]). The communication libraries consist
of channel interface, collective and neighbor interface, and global data libraries.
These interfaces are built on the basic layer that provides a global memory model
among processes. Programmers create channels when needed in a channel inter-
face, and destroy them when communication has finished. The channel interface
reduces memory usage by creating and destroying channels only when needed.

ACPdl privides five types of data structures which are vector, list, deque,
set and map which are similar to the collection of the C++ language standard
template library. It also provides a global memory allocator function named the
acp malloc which allocates a segment of global memory from current process on
a specified process rank. A global memory segment allocated by the acp malloc
function can be easily freed by the acp free function.

4 Evaluation of ACPbl and ACPdl

We are now developing ACP libraries and have finished ACPbl for UDP/IP and
Tofu and some of ACPdl to evaluate it. Fujitsu Supercomputer PRIMEHPC
FX10 was used for the evaluation on Tofu interconnect, Fujitsu Supercom-
puter PRIMEHPC FX100 for the evaluation on Tofu2 interconnect, and Fujitsu
PRIMERGY RX200 S7 for the evaluation of UDP/IP. Fig. 2 plots the prelimi-
nary bandwidth performance of ACPbl for a Tofu interconnect using an acp copy
function with local memory to remote memory in Table 2.

4.1 Evaluation of ACPbl Communication Performance

The performance of the communication bandwidth of MPI has also been shown
for comparison, and it can be seen ACPbl outperformed MPI in bandwidth. We
also evaluated preliminary memory usage by ACPbl.

�

���

����

����

����

����

����

����

����

����

����

����	�� ����	�� ����	�� ����	�� ����	�� ����	�� ����	�
 ����	��

�
�������������

������������

���� ��� �!"#

�
�
�
�
�
�
��
�
	�
�
�

�
�
�
�

��
	�

�
�
�
��
�

Fig. 2. Performance of ACPbl Communication on Tofu

4.2 Evaluation of ACPbl Memory Usage

Current estimated memory usage by ACPbl for Tofu is 70 MB on one million
processes, and that for UDP/IP is 19 MB. These results are better than the
results in Table. 1.

Table.3 shows the detail analysis of ACPbl memory usage on Tofu. In addition
to the memory usage, 2 MBytes of memories are needed for Tofu hardware
operation. Therefore, 72 MBytes of memories are needed for Tofu communication
using ACPbl of Tofu. This means the combination of ACP and Tofu, which is not

Table 3. Memory Usage of ACPbl(Tofu) on 1 Million Processes

ACPbl(Tofu)

Memories in proportion 69 MBytes@ 1M
of the # of Processes Per Process Information
–Command Receive Buffer 64 Bytes / Process
–Tofu Address Table 4 Bytes / Process
–Tofu Routing Table 1 Bytes / Process

Memories in proportion 9 KBytes
of the # of Memory Resistation for 128 Entries

Misc. Buffers 262 KBytes

connection oriented, is able to realize exa-scale communication. However, MPI
on Tofu requires about 2.2 GB of memory for one million processes as same as
UD protocol on InfiniBand, because current MPI implementation requires MPI
buffer and control structure for all ranks statically.

4.3 Evaluation of ACPdl Execution Performance

This subsection presents evaluation results of ACPdl functions. In the evalua-
tions, the acp malloc, acp free, acp insert map, and acp find map functions were
evaluated. Every experiment used two nodes and all functions accessed memory
of the other process on the remote node.

1

10

100

1000

local malloc local free remote malloc remote free

A
v

er
a

g
e

ex
ec

u
ti

o
n

 t
im

e
(u

s)

UDP/RX200

Tofu/FX10

Tofu2/FX100

Fig. 3. Performance of ACPdl acp malloc and acp free

Fig. 3 shows the evaluation results of the acp malloc and acp free functions.
The average execution times of the acp malloc and acp free functions with the
initial algorithm were around 420 and 400 usecs using the UDP version of ACPbl,
31 and 29 usecs using Tofu, and 24 and 24 usecs using Tofu2.

Fig. 4 shows the results of the acp insert map and acp find map functions.
The average execution times of the acp insert map and acp find map functions
were around 1040 and 760 usecs using the UDP version of ACPbl, 86 and 64
usecs using Tofu, and 90 and 82 usecs using Tofu2.

These results show that ACPdl can be used effectively to handle distributed
data structures with data allocation and manipulation on global memory space.

10

100

1,000

UDP Tofu Tofu2

A
v

e
r
a

g
e
 e

x
e
c
u

ti
o

n
 t

im
e
 (

µ
s)

acp_insert_map

acp_find_map

Fig. 4. Performance of ACPdl acp insert map and acp find map

5 Related Work
There have been several related work to reduce memory usage in related work.

MPICH, MVAPICH[6] and Open MPI use memory reduction techniques for
InfiniBand. They use the UD and RC-SRQ communication protocol to reduce
memory usage. Mellanox Dynamically Connected (DC) Transport Service, which
also reduces the memory usage footprint drastically. However, DC is imple-
mented on original InfiniBand RC protocol and some performance degradation
exists when RC connections are disconnected and connected.

Open MPI only allocates a communication data buffer for communication.
Open MPI for the K computer introduces two memory consumption models,
i.e., high performance and memory saving modes[7]. It allocates the memory
saving mode on first communication to a destination, and when the number
of communications exceeds a predefined value, 16 at default, it switches the
memory saving model into high performance mode.

Balaji et al.[8] discusses MPI on a million processors on MPICH and current
implementation requires 80% (1.6GB) of memory on 128K BlueGene/P process
system. It points out memory usage by communicator creation.

There are several low level communication libraries that support RDMA
access and multiple networks such as UCCS[9], Portals[10], PAMI[11], and so
on. These communication libraries provide RDMA based communication and
message communication and memory usages by them depend on how to use the
message communication. They do not focus memory usage reduction.

However, ACPs are true global memory based so that house keeping memo-
ries such as the other process’es information can be distributed to other processes
and programmers explicitly consider memory usage by using ACPs to reduce
memory usage even if for message communication.

6 Summary and Future Work
This paper proposed a global memory based communication design to reduce
memory usage in exa-scale communication. We analyzed memory usage by cur-
rent communication libraries and clarified issues with reducing memory usage

by house-keeping memory such as the other process’es information in communi-
cation libraries.

We proposed global memory based communication primitives called ACPs to
solve these issues. ACPs provide global addresses, which are able to use remote
atomic memory operations on the global memory, and RDMA based memory
copy communication, global heap allocator and global data libraries. ACPs are
different from the other communication libraries because ACPs are global mem-
ory based so that house keeping memories can be distributed to other processes
and programmers explicitly consider memory usage by using ACPs.

We have finished implementing ACPbl for UDP/IP, Tofu and InfiniBand, and
ACPdl including global heap memory allocation and manipulation of five types
of data structures. The preliminary evaluation results show that performance and
memory usage of ACPbl outperform current MPI libraries and the preliminary
result of memory usage by ACPs is 70MB on one million processes. We intend
to evaluate and optimize ACPbl and apply to several libraries such as global
array, co-array and scripting languages such as python.

References

1. Open MPI:http://www.open-mpi.org/.
2. MPICH-A Portable Implementation of MPI:

http://www-unix.mcs.anl.gov/mpi/mpich/.
3. Shinji Sumimoto, Takayuki Okamoto, Hideyuki Akimoto, Tomoya Adachi, Yuichiro

Ajima, and Kenichi Miura. Dynamic Memory Usage Analysis of MPI Libraries Us-
ing DMATP-MPI. In Proceedings of the 20th European MPI Users’ Group Meeting,
EuroMPI ’13, pp. 149–150. ACM, 2013.

4. S. Sumimoto, A. Naruse, K. Kumon, K. Hosoe, and T. Shimizu. PM/InfiniBand-
FJ: a high performance communication facility using InfiniBand for large scale PC
clusters. In High Performance Computing and Grid in Asia Pacific Region, 2004.
Proceedings. Seventh International Conference on, pp. 104–113, July 2004.

5. Yuichiro Ajima, Takafumi Nose, Kazushige Saga, Naoyuki Shida, and Shinji Sum-
imoto. ACPdl: Data-Structure and Global Memory Allocator Library over a Thin
PGAS-Layer. In First International Workshop on Extreme Scale Programming
Models and Middleware ESPM2, 2015.

6. MVAPICH: http://mvapich.cse.ohio-state.edu/.
7. Shinji Sumimoto. The mpi communication library for the k computer: Its design

and implementation. In EuroMPI, p. 11, 2012.
8. Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar,

Ewing Lusk, Rajeev Thakur, and Jesper Larsson Träff. MPI on a Million Proces-
sors. In Proceedings of the 16th Euro PVM/MPI, pp. 20–30, 2009.

9. UCCS-Universal Common Communication Substrate: http://uccs.github.io/uccs/.
10. Portals4: http://www.cs.sandia.gov/Portals/portals4.html.
11. S. Kumar, A.R. Mamidala, D.A. Faraj, B. Smith, M. Blocksome, B. Cer-

nohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger, Dong Chen, and
B. Steinmacher-Burrow. Pami: A parallel active message interface for the blue
gene/q supercomputer. In Parallel Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International, pp. 763–773, May 2012.

