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arbal�inf.u
3m.esAbstra
t. Data grid repli
ation is 
riti
al for improving the perfor-man
e of data intensive appli
ations. Most of the used te
hniques fordata repli
ation use Repli
a Lo
ation Servi
es (RLS) to resolve the log-i
al name of �les to its physi
al lo
ations. An example of su
h servi
eis Giggle, whi
h 
an be found in the OGSA/Globus ar
hite
ture. Clas-si
al algorithms also need some 
atalog and optimization servi
es. Forexample, the EGEE DataGrid proje
t, based in Globus open sour
e 
om-ponents, implements for this purpose the Repli
a Optimization Servi
e(ROS) and the Repli
a Metadata Catalog (RMC). In this paper we pro-pose a new approa
h for improving the performan
e of Data grid repli-
ation. With this aim, we apply Emergent Arti�
ial Intelligen
e (EAI)te
hniques to data repli
ation. The paper des
ribes a new algorithm forrepli
a sele
tion in grid environments based on a PSO-LRU (Parti
leSwarm Optimization) approa
h. For evaluating this te
hnique we haveimplemented a grid simulator 
alled SiCoGrid. The simulation resultspresented in the paper demonstrate that the new te
hnique improve theperforman
e 
ompared with traditional solutions.1 Introdu
tionGrid repli
ation of remote data is 
riti
al for data intensive enterprise and s
i-enti�
 appli
ations, mostly implemented over Globus middleware[1℄. Virtual Or-ganisations are usually geographi
al and user aÆnity 
ommunities around a bigdata produ
er, in the s
ale of Tera Bytes a day, with the aim of extra
t infor-mation from this read-only remote data, by running jobs on the Grid. On this
ontext repli
ation is used for fault toleran
e as well as to provide load balan
ingby distributed repli
as of data.The OGSA[2℄ and therefore the Globus Toolkit 4.0 assumes the Giggle[3℄as a framework for 
onstru
ting s
alable Repli
a Lo
ation Servi
es(RLS) thatallows the registration and dis
overy of repli
as. Given a logi
al identi�er of a�le(LFN), the RLS must to provide the physi
al lo
ations of the repli
as forthe �le(PFN). The RLS 
onsists of two 
omponents. Lo
al Repli
a Catalogs



(LRCs) manages 
onsistent information about logi
al to physi
al mappings onea
h site or node. Repli
a Lo
ation Indi
es (RLIs) hold the information aboutthe mappings 
ontained in one or more LRC. Strong 
onsisten
y is not requiredon the RLIs, a soft proto
ol send LRC state information to 
onne
ted RLIs,whi
h then in
orporate this information into their indi
es and delete time outsentries. The basi
 Giggle ar
hite
ture on Figure 1 shows two layers, but thear
hite
ture is usually 
on�gured on N layers of hierar
hi
al RLI.

Fig. 1. Basi
 RLS Ar
hite
tureMany resear
h groups have developed algorithms and ar
hite
tures for repli
asele
tion and lo
ation. Ann Chervenak et al. propose the Giggle[3℄ as a frame-work, and several 
on
rete instantiations based on a hierar
hi
al RLS topology,that are 
hara
terized with six parameters shown on the Table 1 of the 
ontribsse
tion, in wi
h we have added some new values that will be explained.Other important OGSA/Globus data Grid servi
e 
omponents are: GridFTPa not Web Servi
e(WS) 
omponent for �les transfer, Reliable File Transfer(RFT) for GridFTP monitoring, Data Repli
ation Servi
e (DRS) is the WS
omponent that en
apsulate the non-WS RLS and RFT for GT4, OGSA-DAIit is a WS GT4 
omponent for relational data base and XML obje
ts repli-
ation. Furthermore, usually it is need some aditional funtionalities, thus theEGEE DataGrid has the ROS and RMC 
omponents for the data Grid servi
eframework.Next se
tion of this paper des
ribes the related work on some aspe
ts of dataGrid servi
e:{ Repli
a state of the art algorithms.{ We analyze the resear
h bran
hes to get some theoreti
al 
on
lusions.{ We des
ribe the features of the Grid simulators used for experimental testof this algorithms.After related work se
tion we explain the three main 
ontributions of ourapproa
h: a framework review for an enhan
ed Giggle, a better performan
e



algorithm for repli
a sele
tion based on PSO and LRU, and we present a 
ompletegrid elements shaped on our SiCoGrid (Simulador Completo Grid).On the fourth se
tion we explain the evaluation methodology, and on �fth wepresent experimental results of our improved approa
h to the data Grid. Finallywe summarise some 
on
lusions.2 Related WorkChervenak et al.[3℄ present some initial performan
e results for �ve implemen-tation approa
hes based on the following Giggle 
on�gurations:{ RLS1: Single RLI for all LRCs.{ RLS2: LFN Partitioning, Redundan
y, Bloom Filters.{ RLS3: Compression, Partitioning based on Colle
tions.{ RLS4: Repli
a Site Partitioning, Redundan
y, Bloom Filters.{ RLS5: A Hierar
hi
al Index.They use prototype implementations that show good s
alability but does notin
lude network simulation, the prototype is fo
used on disks throughput, butboth disks and network 
ould be system la
k depending on study issue 
lass.There are some approa
hes that propose an e
onomi
al algorithm for repli
asele
tion where the 
osts of a �le transfers are evaluated as:
ost(f; i; j) = f(bandwidhti;j ; sizef) (1)Lamehamedi and Deelman approa
h[4℄ uses bouth hierar
hi
al and 
at propaga-tion graphs spanning the overall set of repli
as to overlay repli
as on the data gridand minimizing inter-repli
a 
ommuni
ations 
ost. Beginning on the hierar
hi
alGiggle topology they introdu
e a 
at-tree stru
ture with redundant inter
onne
-tions for its nodes; 
loser the node is to the root, more inter
onne
tions it has.The 
at-tree was originally introdu
ed by Leisersons[5℄ to improve the perfor-man
e of inter
onne
tion networks in parallel 
omputing systems. Lamehamediet al. identi�es on this approa
h that 
at-tree on a ring topology suits bestthan hierar
hi
al with multiple servers or peer repli
a appli
ations. For simula-tion framework they use a network simulation[6℄, without 
onsiderer the disksthroughput, so results are limited by the premise that the system la
k is on thenetwork. Anyway they obtain rough network resour
e 
onsumption evaluation
omparing with the pure hierar
hi
al RLS.Another e
onomi
 approa
h[7℄[8℄ understand the Grid as a market wheredata �les represent the goods. They are pur
hased by Computing Elements forjobs and by Storage Element in order to make an investment that will improvetheir revenues in the future. The �les are sold by Storage Elements to ComputeElements and to other Storage Elements. Compute Elements try to minimise the�le pur
hase 
ost and the Storage Elements have the goal of maximising pro�ts.When a repli
ation de
ision is taken, the �le transfer 
ost is the pri
e for thegood, like the fun
tion 1 show above. The Repli
a Optimiser may repli
ate or not



based on whether the repli
ation(with asso
iated �le transfer and �le deletion)will result in to redu
e the expe
ted future a

ess 
ost for the lo
al ComputingElements. Repli
a Optimiser keeps tra
k of the �le requests it re
eives and usesan evaluation fun
tion: E(f; r; n), de�ned in [9℄ that returns the predi
ted num-ber of times a �le f, will be request in the next n, based on the past r requesthistory base line. The predi
tion fun
tion E is 
al
ulated for a new �le requestre
eived on Repli
a Optimiser for �le f. E is also 
al
ulated for every �le in thestorage node. If there is no �le with less value than the value of new �le requestf, then no repli
ation o

urs. Otherwise least value �le is sele
ted for deletion annew repli
a is 
reated for f.The resear
h group that propose this approa
h also present OptorSim [10℄[11℄, the �rst Grid simulator that holds network and in some way disk 
osts. The�rst version was time driven but se
ond version is event driven and it also hasothers s
heduling improvements[12℄. Results [7℄ present some spe
i�
 realisti

ases where the e
onomi
 model shows marked performan
e improvements overtraditional methods.A Peer-to-Peer repli
a lo
ation servi
e based on a distributed hash table[13℄ is�ll on Giggle with Peer-to-Peer-RLI(P-RLI). P-RLI uses the Chord algorithm toself-organise P-RLI and it exploits the Chord overlay network to repli
ate P-RLImappings. The Chord algorithm also route adaptively the P-RLI logi
al nameswith LRC sites. The repli
ation of mappings provides a high level of reliabilityin the P-RLI, the 
onsisten
y is stronger than in simple RLI nodes. The P-RLSperforman
e is tested on a 16-node 
luster s
ale with the network size. It isalso tested with a simulation for larger network of P-RLI nodes, evaluating thedistribution of mappings in the P-RLS network. The simulation for this testse
tion is not a 
omplete simulation of the P-RLS system, but rather, it fo
useson how keys are mapped to the P-RLI nodes and how queries for mappings areresolved in the network.Nowadays there are many approa
hes with similar methods and similar per-forman
es as state of the art above. Other des
entralized adaptive repli
ationme
hanism[14℄ organise nodes into overlay network and distribute lo
ation in-formation, but do not route requests. Ea
h node that parti
ipates in the dis-tribution network build, in time, a view of the whole system and 
an answerqueries lo
ally without forwarding request. Unfortunatelly this is not 
ommonon large s
ale s
ienti�
 datasets, that suppose the most of the operative Gridinfrastru
tures.3 Contributions3.1 Proposed Data Grid Servi
e FrameworkThe enhan
ed Giggle shown on Table 1 avoid the restri
tions for the 
at ap-proa
hes. Now it is not ne
essary to store the LFN mapping out of the lo
alnode. It is not ne
essary to implement any RLI layer on the ar
hite
ture. There-fore the RLS is 
ompletely 
onsistent. On the fun
tion used to partitioning the



LFN name spa
e, we add a entry for 
at ar
hite
ture with no partitioning byLFN. Every LRC manage the name spa
e lo
ally independent. First introdu
edvalue is for G = 0 pointing out a 
at RLS 
omposed only by LRCs and no RLIlayer. There are a no partitioning a
tions for LFN names spa
e (PL = flat), andno partitioning the RLI name spa
e (PR = flat). For the degree of redundan
yin the index spa
e we add a new 
ase R = 0 for the LFN mapping only onthe LRC. We also have in
lude e
onomi
 and 
at heuristi
 for possible S values(the fun
tion used to determine what LRC information to send to other 
atalogentities and when).
Table 1. The six parameters enhan
ed Giggle RLS stru
tures and values.G The number of RLIsG = 0 A 
at partitioned index, only LRC on a 
at layerG = 1 A 
entralised, non-redundant or partitioned indexG > 1 An index that in
ludes partitioning and/or redundan
yG � N A highly des
entralized indexPL The fun
tion used to partitioning the LFN name spa
ePL = O No partitioning by LFN. The RLIs must have storageto re
ord information about all LFNs, a large numberPL = hash Random partitioning. +load balan
e, -lo
alityPL = 
oll Partitioning on 
olle
tion name. -load balan
e, +lo
alityPL = flat No partitioning by LFN. Every LRC is lo
ally managePR Fun
tion used to partition repli
a site name spa
ePR = 0 No partitioning by site name. Indi
es have entries for everyrepli
a of every LFN they are responsible for.PR = IP Partitioning by domain name or similar.PR = flat There are no index for partitioning site name spa
e.R The degree of redundan
y in the index spa
eR = 0 The LFN mapping is only on the LRCR = 1 No redundan
y: ea
h repli
a is indexed by only one RLIR = G > 1 Full index of all repli
as at ea
h RLI. Impliesno partitioning, mu
h redundan
y/spa
e overhead.1 < R < G A highly des
entralized index.C The fun
tion used to 
ompress LRC informationC = O No 
ompression: RLIs re
eives full LFN/site informationC = bloom RLIs re
eive bloom �lters summariesC = 
oll RLIs re
eive summaries based on 
olle
tion distributionS Fun
tion to set what LRC information to send whereS = full Periodi
ally send entire state to relevant RLIsS = partial In addition, send periodi
 summaries of updatesS = e
onomi
 Every e
onomi
 de
ision send entire state to RLIsS = 
at Only statisti
al information is send for 
at heuristi




At the end of the day we will have a stand alone LRC for ea
h node, with alo
al lo
ation servi
e and need an impli
it global lo
ation interfa
e, but with adistributed RLS servi
e.The data Grid servi
e framework proposed, will 
omplementary need a mod-i�ed ROS, with 
at heuristi
 features on two maners:{ Those algorithms like PSO that need to seend some statisti
al information,bind pear to pear 
onexion between ROS servers in ea
h node.{ Other Emergent Arti�
ial Intelligen
e (EAI) algorithms are stand alone ROSservers, and does not need any 
ontrol information transfer.There also is a distributed ROS servi
e.The typi
al RMC servi
e si not ne
esary for our goal. We do not use a GUID,be
ause ea
h lo
al 
atalog make mapping betwing LFNs and PFN in a onenessway for the lo
al node. But the LRC will need two aditional entries for themetadata information and the original produ
er node of the �le. So we use anenha
ed RLS with some soft 
atalog funtionalities.This new theoreti
al approa
h requires an heuristi
 that realizes enough per-forman
es with only statisti
al information about LRC, and a request routings
heme self des
ribed. This is our goal on the next subse
tion proposing PSO�le lo
ation and sele
tion s
heme and LRU deletion me
hanism as an alternativeto traditional approa
hes. Our data Grid servi
e framework is also valid for anynew approa
h that may walk on 
at heuristi
 way.3.2 The algorithm: PSO-LRUPSO is an Emergent Arti�
ial Intelligen
e te
hnique. EI is an Arti�
ial Intel-ligen
e bran
h that uses the natural so
ial behaviour as ant 
olons or PSO[15℄inspired on bees swarm or birds 
o
ks sear
hing food. PSO has been proved asa valid approa
h for many di�erent real solutions[16℄[17℄.On Grid environments we introdu
e some ta
ti
 modi�
ations, based on thestrategy "follow the 
loser bird from the food 
hunk" as so
ial PSO 
avour.{ A bird 
o
k is in a random sear
h for food in an area.{ For ea
h bird there is only one valid kind of food.{ The bird does not known where is the food 
hunk, but its known how longis from the di�erent areas and it know how many birds are �nding they food
hunk on this areas, this is 
alled food 
hirp. This is the so
ial 
omponentof our approa
h, thus the distan
e to the food 
hunk is 
al
ulated for ea
hbird 
o
k, not for individual birds.{ The strategy is to follow the 
loser bird 
o
k with best su

ess food sear
h.Translating this analogy to the Grid, we suppose that a �le lo
ation requestis a bird sear
hing food. When the bird stand on an area it is on a Grid node,when the bird 
y looking for food to another node is moving through the RemoteNetwork. The bird takes the de
ision from where to sear
h based on the 
o
kfood 
hirp, that is the best performan
e external hit ratio of di�erent nodes.



On the other hand, the food 
hirp will de
reased a
ross distan
e. If the bird isover-
ying a node and �nd food then it will 
hange dire
tion to get it, if thebird arrive to destination and is no food then start again from this point. Thusthe performan
e fun
tion for �le f to node j from node i looks as following. ThePSO-Grid uses a performan
e metri
 for a �le repli
ation between two nodes i,j , de�ned as follow in equation 2. We use b as the identi�er of the node withthe best performan
e metri
 aso
iated to i, from the evaluated j nodes. Initiallyb is the produ
er node of the repli
a, that will be return by LRC soft 
atalogmetadata information des
ribed above, and in the pseudo-
ode below is the getprodu
er fun
tion. We use e for the external hit ratio and 
 for the network 
ost.pi;j = (ej � 
i;j) + ((1� eb) � 
i;b) (2)The external hit ration is 
al
ulated based on N lasts external su

ess requestratio on node j. The external ration events are the information that is sent fromone ROS in ea
h node to another. Considering network a

ess 
ost we proposethe following: 
ost(f; i; j) = f(laten
yi;j; bandwidhti;j ; sizef ) (3)Laten
y is a 
onstant but do not mean neutral on transfers[18℄, the laten
ies aregrowing from one network to an other, the bandwidth on a network 
onne
tionis the minimal bandwidth assigned from one network to another.The performan
e fun
tion is balan
ing the probability of �nd a repli
a in anode j with the probability of not �nding on j, where we have to reply from thenode with best metri
b, initially the produ
er.The 
ore pseudo-
ode is for the fun
tion getPSOBest that return the best thebest performan
e node from node-Id to LFN referen
ed on �le 
atalogs index.The get PSO metri
 fun
tion 
al
ulate the performan
e PSO metri
 des
ribedin the equation above 2. The 3 equation is implemented on the get network 
ostfun
tion.NodeIdType getPSOBest(NodeIdType i, FileIdType f){ bestIdNode = get_produ
er(f)bestPSOmetri
 = get_network_
ost(i,bestIdNode)For ea
h j from the Grid node set repeat{ if ( i != j ){ if ( get_PSO_metri
(i,j} < bestPSOmetri
}){ bestPSOmetri
 = obtenerMetri
aPSO(i,j)bestIdNode = j}}



}return(bestIdNode)} The deletion de
ision is taken in ea
h node only to serve lo
al request, usingthe LRU or LFU algorithm for sele
tint the �le target. When a �le deleted is onpro
ess to remote node reply, the node trigger a new PSO reply in the name ofthe in-reply remote node for the rest of the �le transfer.4 Evaluation MethodologyWe have developed a tool that 
reates log �les for the given input arguments:a

ess pattern, random seed, number of Grid 
lients by node, number of jobs byGrid 
lient.The a

ess pattern are full �le, sequential blo
k a

ess, random, unitaryrandom walk, gaussian random walk, same as OptorSim simulator[10℄[7℄. Therandom seed is for statisti
al experiment repetitions. Number of Grid Clients ina node is a 
omponent of the simultaneous request on a node. The number ofjobs by grid 
lient is a temporal 
omponent of the simulation.Ea
h job will request many �le blo
ks. The 
reate logs appli
ation returnfor ea
h �le request, the blo
k requested, an A
tive Time and a Passive Time.Those times are empiri
al model of Web do
ument arrivals at a

ess link[19℄.After a job get a �le blo
k response it spend an A
tive Time for pro
ess the blo
kpart of the job, this time is 
al
ulated based on Computer Elements featuredspe
i�
ations on network 
on�guration �le. Passive Time is the time that theuser hold between one job and another. For this parameter we use a Paretodistribution with k=1 and alfa = 0.9 with in�nite mean and varian
e, that is a
hara
teristi
 Web Servi
e users distribution[20℄.We have implemented SiCoGrid, developed in Parse
[21℄ that is a 
ombina-tion of C and a simulator parser for 
reating event driven simulators, and alsouse DiskSim[22℄ for the storage disks simulation subsystem. SiCoGrid use theselog �les and some parameters. Possible Grid algorithm values:{ Un
onditional repli
ation, lest frequent use(LFU) �le delete.{ Un
onditional repli
ation, LRU �le delete.{ E
onomi
 Model.{ PSO + LFU{ PSO + LRUAs we have seen on related work se
tion, the best reliable Grid simulationshape should 
onsiderer disks throughput and network traÆ
. For this purposewe have implemented both of them. Figure 2 shows the SiCoGrid node elements
ommuni
ated with a lo
al network simulation. This Grid node 
on�gurationis based in OptorSim and Globus. Between nodes there is a remote networksimulation with an infrastru
ture des
ribed on network 
on�guration �le.



Fig. 2. SiCoGrid node s
heme4.1 Simulation Infrastru
tureWe have 
on�gured our SiCoGrid for a 
ommon Grid stage[23℄ shown on theTable 2. These is the typi
al CERN datagrid spe
i�
ation for node tier 
lass ofa Virtual Organisation. The storage 
apa
ity, �le size, and network bandwidthis s
aled in the magnitude of twenty, for time simulation reasons. Therefore theobtained time results will be on the same magnitude.Table 2. S
aled Grid StageTier Class Real MB/s S
aled Mb/s / 20 Real TB S
aled TB / 201 2048 102.4 220 112 320 16 100 53 10 0.5 20 1On the Figure 3 we 
an see the network infrastru
ture used in our experi-ment. The graph disposes a nomen
lature where the nodes has a �rst numberthat is the tier 
lass, and after the point another identi�
ation number. Belowthere is the storage size of the node in TB. The networks have assigned twonumbers, the �rst one is the laten
y in ms and the other is the bandwidth inMB/s.5 Simulation ResultsOn the following Figure 4 we present Grid simulation results based on the stagedes
ribed above. We use Gaussian random walk, that is the best performan
e forthe state of the art e
onomi
 OptorSim approa
h[10℄. The mean and standarddeviation job response time is s
ale in the magnitude of 20 to usual jobs durationfrom hours to some days. There are shown three di�erent Grid sizes, expressed inthe number of Grid 
lients by node and the number of jobs submitted by a Grid
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Fig. 3. Simulated Grid Stage
lient. The simulations are pure Data Grid, thus all the A
tive Time for pro
essdata are run on the Grid 
lient side. We present results for the best performan
eLRU over LFU deletion s
heme. The OptorSim e
onomi
 approa
h also usesLRU for se
ondary deletion de
isions. The Figure shows the un
onditional-LRU

Fig. 4. Results in Simulated Grid Stageperforman
es with less dashed line style, the e
onomi
 with a more dashed linesstyle, and the PSO-LRU with 
ontinuous line style. The standard deviations arethe tree lines at the bottom, and the average are at the top of the 
hart. OurPSO-LRU approa
h has mu
h better performan
es than the other algorithms



for average and standard deviation. As it was expe
ted the un
onditional usedfor base 
ompare, has the worst results. The PSO-LRU approa
h improve speedover un
onditional in per
ents of 19%, 36% and 29% for simulation size serialof 4X4, 5X5 and 6X6. The PSO-LRU approa
h improve speed over e
onomi
approa
h in per
ents of 7%, 18% and 22% for the same simulation serial.PSO-Grid performan
e is better due to its features: less 
ontrol tra�
, dis-tributed optimization, lo
alization and sele
tion servi
es, autonomous manage-ment of ea
h node will �t best on user and geogra�
al a�nities, 
olaborativestrategie against 
ompetitive strategie of the e
onomi
, that usually performsbetter on the long term.6 Con
lusions and Future WorkWe have des
ribed two relevant 
ontributions to the Data Grid 
orpus. The en-han
ed Giggle framework that 
onsider 
at RLS stru
tures, opening the door tothe EI and other EAI approa
hes for the OGSA data Grid repli
ation ar
hite
-ture. Spe
i�
 PSO-LRU algorithm has been proved as the better performan
e jobresponse time and mu
h better s
alability features than traditional approa
hes,using a full network and disk subsystem simulation, SiCoGrid.We have open resear
h lines for the following targets: Cy
li
al graph gridinfrastru
ture simulations, other emergent EAI algorithms like Ant Colony Op-timization and a depth variable 
orrelations studies.7 A
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