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Abstract. Data grid replication is critical for improving the perfor-
mance of data intensive applications. Most of the used techniques for
data replication use Replica Location Services (RLS) to resolve the log-
ical name of files to its physical locations. An example of such service
is Giggle, which can be found in the OGSA/Globus architecture. Clas-
sical algorithms also need some catalog and optimization services. For
example, the EGEE DataGrid project, based in Globus open source com-
ponents, implements for this purpose the Replica Optimization Service
(ROS) and the Replica Metadata Catalog (RMC). In this paper we pro-
pose a new approach for improving the performance of Data grid repli-
cation. With this aim, we apply Emergent Artificial Intelligence (EAI)
techniques to data replication. The paper describes a new algorithm for
replica selection in grid environments based on a PSO-LRU (Particle
Swarm Optimization) approach. For evaluating this technique we have
implemented a grid simulator called SiCoGrid. The simulation results
presented in the paper demonstrate that the new technique improve the
performance compared with traditional solutions.

1 Introduction

Grid replication of remote data is critical for data intensive enterprise and sci-
entific applications, mostly implemented over Globus middleware[1]. Virtual Or-
ganisations are usually geographical and user affinity communities around a big
data producer, in the scale of Tera Bytes a day, with the aim of extract infor-
mation from this read-only remote data, by running jobs on the Grid. On this
context replication is used for fault tolerance as well as to provide load balancing
by distributed replicas of data.

The OGSAJ[2] and therefore the Globus Toolkit 4.0 assumes the Giggle[3]
as a framework for constructing scalable Replica Location Services(RLS) that
allows the registration and discovery of replicas. Given a logical identifier of a
file(LFN), the RLS must to provide the physical locations of the replicas for
the file(PFN). The RLS consists of two components. Local Replica Catalogs



(LRCs) manages consistent information about logical to physical mappings on
each site or node. Replica Location Indices (RLIs) hold the information about
the mappings contained in one or more LRC. Strong consistency is not required
on the RLIs, a soft protocol send LRC state information to connected RLIs,
which then incorporate this information into their indices and delete time outs
entries. The basic Giggle architecture on Figure 1 shows two layers, but the
architecture is usually configured on N layers of hierarchical RLI.

Replica Location Indexes
RLI RLI

LRC| |LRC | |LRC LRC LRC

Local Replica Catalogs

Fig. 1. Basic RLS Architecture

Many research groups have developed algorithms and architectures for replica
selection and location. Ann Chervenak et al. propose the Giggle[3] as a frame-
work, and several concrete instantiations based on a hierarchical RLS topology,
that are characterized with six parameters shown on the Table 1 of the contribs
section, in wich we have added some new values that will be explained.

Other important OGSA /Globus data Grid service components are: GridF TP
a not Web Service(WS) component for files transfer, Reliable File Transfer
(RFT) for GridFTP monitoring, Data Replication Service (DRS) is the WS
component that encapsulate the non-WS RLS and RFT for GT4, OGSA-DAI
it is a WS GT4 component for relational data base and XML objects repli-
cation. Furthermore, usually it is need some aditional funtionalities, thus the
EGEE DataGrid has the ROS and RMC components for the data Grid service
framework.

Next section of this paper describes the related work on some aspects of data
Grid service:

— Replica state of the art algorithms.

— We analyze the research branches to get some theoretical conclusions.

— We describe the features of the Grid simulators used for experimental test
of this algorithms.

After related work section we explain the three main contributions of our
approach: a framework review for an enhanced Giggle, a better performance



algorithm for replica selection based on PSO and LRU, and we present a complete
grid elements shaped on our SiCoGrid (Simulador Completo Grid).

On the fourth section we explain the evaluation methodology, and on fifth we
present, experimental results of our improved approach to the data Grid. Finally
we summarise some conclusions.

2 Related Work

Chervenak et al.[3] present some initial performance results for five implemen-
tation approaches based on the following Giggle configurations:

— RLS1: Single RLI for all LRCs.

— RLS2: LFN Partitioning, Redundancy, Bloom Filters.

— RLS3: Compression, Partitioning based on Collections.

— RLS4: Replica Site Partitioning, Redundancy, Bloom Filters.
— RLS5: A Hierarchical Index.

They use prototype implementations that show good scalability but does not
include network simulation, the prototype is focused on disks throughput, but
both disks and network could be system lack depending on study issue class.

There are some approaches that propose an economical algorithm for replica
selection where the costs of a file transfers are evaluated as:

cost(f,i,7) = f(bandwidht; ;, sizey) (1)

Lamehamedi and Deelman approach[4] uses bouth hierarchical and flat propaga-
tion graphs spanning the overall set of replicas to overlay replicas on the data grid
and minimizing inter-replica communications cost. Beginning on the hierarchical
Giggle topology they introduce a flat-tree structure with redundant interconnec-
tions for its nodes; closer the node is to the root, more interconnections it has.
The flat-tree was originally introduced by Leisersons[5] to improve the perfor-
mance of interconnection networks in parallel computing systems. Lamehamedi
et al. identifies on this approach that flat-tree on a ring topology suits best
than hierarchical with multiple servers or peer replica applications. For simula-
tion framework they use a network simulation[6], without considerer the disks
throughput, so results are limited by the premise that the system lack is on the
network. Anyway they obtain rough network resource consumption evaluation
comparing with the pure hierarchical RLS.

Another economic approach[7][8] understand the Grid as a market where
data files represent the goods. They are purchased by Computing Elements for
jobs and by Storage Element in order to make an investment that will improve
their revenues in the future. The files are sold by Storage Elements to Compute
Elements and to other Storage Elements. Compute Elements try to minimise the
file purchase cost and the Storage Elements have the goal of maximising profits.

When a replication decision is taken, the file transfer cost is the price for the
good, like the function 1 show above. The Replica Optimiser may replicate or not



based on whether the replication(with associated file transfer and file deletion)
will result in to reduce the expected future access cost for the local Computing
Elements. Replica Optimiser keeps track of the file requests it receives and uses
an evaluation function: E(f,r,n), defined in [9] that returns the predicted num-
ber of times a file f, will be request in the next n, based on the past r request
history base line. The prediction function E is calculated for a new file request
received on Replica Optimiser for file f. E is also calculated for every file in the
storage node. If there is no file with less value than the value of new file request
f, then no replication occurs. Otherwise least value file is selected for deletion an
new replica is created for f.

The research group that propose this approach also present OptorSim [10]
[11], the first Grid simulator that holds network and in some way disk costs. The
first version was time driven but second version is event driven and it also has
others scheduling improvements[12]. Results [7] present some specific realistic
cases where the economic model shows marked performance improvements over
traditional methods.

A Peer-to-Peer replica location service based on a distributed hash table[13] is
fill on Giggle with Peer-to-Peer-RLI(P-RLI). P-RLI uses the Chord algorithm to
self-organise P-RLI and it exploits the Chord overlay network to replicate P-RLI
mappings. The Chord algorithm also route adaptively the P-RLI logical names
with LRC sites. The replication of mappings provides a high level of reliability
in the P-RLI, the consistency is stronger than in simple RLI nodes. The P-RLS
performance is tested on a 16-node cluster scale with the network size. It is
also tested with a simulation for larger network of P-RLI nodes, evaluating the
distribution of mappings in the P-RLS network. The simulation for this test
section is not a complete simulation of the P-RLS system, but rather, it focuses
on how keys are mapped to the P-RLI nodes and how queries for mappings are
resolved in the network.

Nowadays there are many approaches with similar methods and similar per-
formances as state of the art above. Other descentralized adaptive replication
mechanism[14] organise nodes into overlay network and distribute location in-
formation, but do not route requests. Each node that participates in the dis-
tribution network build, in time, a view of the whole system and can answer
queries locally without forwarding request. Unfortunatelly this is not common
on large scale scientific datasets, that suppose the most of the operative Grid
infrastructures.

3 Contributions

3.1 Proposed Data Grid Service Framework

The enhanced Giggle shown on Table 1 avoid the restrictions for the flat ap-
proaches. Now it is not necessary to store the LEN mapping out of the local
node. It is not necessary to implement any RLI layer on the architecture. There-
fore the RLS is completely consistent. On the function used to partitioning the



LFN name space, we add a entry for flat architecture with no partitioning by
LEN. Every LRC manage the name space locally independent. First introduced
value is for G = 0 pointing out a flat RLS composed only by LRCs and no RLI
layer. There are a no partitioning actions for LEN names space (P, = flat), and
no partitioning the RLI name space (Pr = flat). For the degree of redundancy
in the index space we add a new case R = 0 for the LFN mapping only on
the LRC. We also have include economic and flat heuristic for possible S values
(the function used to determine what LRC information to send to other catalog
entities and when).

Table 1. The six parameters enhanced Giggle RLS structures and values.

G The number of RLIs
G=0 A flat partitioned index, only LRC on a flat layer
G=1 A centralised, non-redundant or partitioned index
G>1 An index that includes partitioning and/or redundancy
G>N A highly descentralized index
Pr, The function used to partitioning the LEFN name space
Pr, =0 No partitioning by LEN. The RLIs must have storage
to record information about all LFNs, a large number
Pr, = hash Random partitioning. +load balance, -locality
Pr, = coll Partitioning on collection name. -load balance, +locality
P = flat No partitioning by LFN. Every LRC is locally manage
Pr Function used to partition replica site name space
Pr =0 No partitioning by site name. Indices have entries for every
replica of every LFN they are responsible for.
Pr=1P Partitioning by domain name or similar.
Pr = flat There are no index for partitioning site name space.
R The degree of redundancy in the index space
R=0 The LFN mapping is only on the LRC
R=1 No redundancy: each replica is indexed by only one RLI
R=G>1 Full index of all replicas at each RLI. Implies

no partitioning, much redundancy/space overhead.
1<R<G A highly descentralized index.

C The function used to compress LRC information
Cc=0 No compression: RLIs receives full LEN/site information
C = bloom RLIs receive bloom filters summaries
C = coll RLIs receive summaries based on collection distribution
S Function to set what LRC information to send where
S = full Periodically send entire state to relevant RLIs
S = partial In addition, send periodic summaries of updates

S = economic Every economic decision send entire state to RLIs
S = flat Only statistical information is send for flat heuristic




At the end of the day we will have a stand alone LRC for each node, with a
local location service and need an implicit global location interface, but with a
distributed RLS service.

The data Grid service framework proposed, will complementary need a mod-
ified ROS, with flat heuristic features on two maners:

— Those algorithms like PSO that need to seend some statistical information,
bind pear to pear conexion between ROS servers in each node.

— Other Emergent Artificial Intelligence (EAI) algorithms are stand alone ROS
servers, and does not need any control information transfer.

There also is a distributed ROS service.

The typical RMC service si not necesary for our goal. We do not use a GUID,
because each local catalog make mapping betwing LFNs and PFN in a oneness
way for the local node. But the LRC will need two aditional entries for the
metadata information and the original producer node of the file. So we use an
enhaced RLS with some soft catalog funtionalities.

This new theoretical approach requires an heuristic that realizes enough per-
formances with only statistical information about LRC, and a request routing
scheme self described. This is our goal on the next subsection proposing PSO
file location and selection scheme and LRU deletion mechanism as an alternative
to traditional approaches. Our data Grid service framework is also valid for any
new approach that may walk on flat heuristic way.

3.2 The algorithm: PSO-LRU

PSO is an Emergent Artificial Intelligence technique. EI is an Artificial Intel-
ligence branch that uses the natural social behaviour as ant colons or PSOJ15]
inspired on bees swarm or birds flocks searching food. PSO has been proved as
a valid approach for many different real solutions[16][17].

On Grid environments we introduce some tactic modifications, based on the
strategy ”follow the closer bird from the food chunk” as social PSO flavour.

— A bird flock is in a random search for food in an area.

— For each bird there is only one valid kind of food.

— The bird does not known where is the food chunk, but its known how long
is from the different areas and it know how many birds are finding they food
chunk on this areas, this is called food chirp. This is the social component
of our approach, thus the distance to the food chunk is calculated for each
bird flock, not for individual birds.

— The strategy is to follow the closer bird flock with best success food search.

Translating this analogy to the Grid, we suppose that a file location request
is a bird searching food. When the bird stand on an area it is on a Grid node,
when the bird fly looking for food to another node is moving through the Remote
Network. The bird takes the decision from where to search based on the flock
food chirp, that is the best performance external hit ratio of different nodes.



On the other hand, the food chirp will decreased across distance. If the bird is
over-flying a node and find food then it will change direction to get it, if the
bird arrive to destination and is no food then start again from this point. Thus
the performance function for file f to node j from node i looks as following. The
PSO-Grid uses a performance metric for a file replication between two nodes i,
j , defined as follow in equation 2. We use b as the identifier of the node with
the best performance metric asociated to i, from the evaluated j nodes. Initially
b is the producer node of the replica, that will be return by LRC soft catalog
metadata information described above, and in the pseudo-code below is the get
producer function. We use e for the external hit ratio and ¢ for the network cost.

pij = (ej*cij) + (1 —ep) *cip) (2)

The external hit ration is calculated based on N lasts external success request
ratio on node j. The external ration events are the information that is sent from
one ROS in each node to another. Considering network access cost we propose
the following:

cost(f,i,j) = f(latency; j, bandwidht; ;, sizey) (3)

Latency is a constant but do not mean neutral on transfers[18], the latencies are
growing from one network to an other, the bandwidth on a network connection
is the minimal bandwidth assigned from one network to another.

The performance function is balancing the probability of find a replica in a
node j with the probability of not finding on j, where we have to reply from the
node with best metrich, initially the producer.

The core pseudo-code is for the function getPSOBest that return the best the
best performance node from node-Id to LFN referenced on file catalogs index.
The get PSO metric function calculate the performance PSO metric described
in the equation above 2. The 3 equation is implemented on the get network cost
function.

NodeIdType getPSOBest(NodeIdType i, FileIdType f)
{

bestIdNode = get_producer (f)

bestPSOmetric = get_network_cost(i,bestIdNode)

For each j from the Grid node set repeat

{
if (it'=3j)
{
if ( get_PSO_metric(i,j} < bestPSOmetric})
{
bestPSOmetric = obtenerMetricaPS0(i,j)
bestIdNode = j
}



}
return(bestIdNode)

The deletion decision is taken in each node only to serve local request, using
the LRU or LFU algorithm for selectint the file target. When a file deleted is on
process to remote node reply, the node trigger a new PSO reply in the name of
the in-reply remote node for the rest of the file transfer.

4 Evaluation Methodology

We have developed a tool that creates log files for the given input arguments:
access pattern, random seed, number of Grid clients by node, number of jobs by
Grid client.

The access pattern are full file, sequential block access, random, unitary
random walk, gaussian random walk, same as OptorSim simulator[10][7]. The
random seed is for statistical experiment repetitions. Number of Grid Clients in
a node is a component of the simultaneous request on a node. The number of
jobs by grid client is a temporal component of the simulation.

Each job will request many file blocks. The create logs application return
for each file request, the block requested, an Active Time and a Passive Time.
Those times are empirical model of Web document arrivals at access link[19].
After a job get a file block response it spend an Active Time for process the block
part of the job, this time is calculated based on Computer Elements featured
specifications on network configuration file. Passive Time is the time that the
user hold between one job and another. For this parameter we use a Pareto
distribution with k=1 and alfa = 0.9 with infinite mean and variance, that is a
characteristic Web Service users distribution[20].

We have implemented SiCoGrid, developed in Parsec[21] that is a combina-
tion of C and a simulator parser for creating event driven simulators, and also
use DiskSim[22] for the storage disks simulation subsystem. SiCoGrid use these
log files and some parameters. Possible Grid algorithm values:

— Unconditional replication, lest frequent use(LFU) file delete.
Unconditional replication, LRU file delete.

— Economic Model.

PSO + LFU

PSO + LRU

As we have seen on related work section, the best reliable Grid simulation
shape should considerer disks throughput and network traffic. For this purpose
we have implemented both of them. Figure 2 shows the SiCoGrid node elements
communicated with a local network simulation. This Grid node configuration
is based in OptorSim and Globus. Between nodes there is a remote network
simulation with an infrastructure described on network configuration file.
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Fig. 2. SiCoGrid node scheme

4.1 Simulation Infrastructure

We have configured our SiCoGrid for a common Grid stage[23] shown on the
Table 2. These is the typical CERN datagrid specification for node tier class of
a Virtual Organisation. The storage capacity, file size, and network bandwidth
is scaled in the magnitude of twenty, for time simulation reasons. Therefore the
obtained time results will be on the same magnitude.

Table 2. Scaled Grid Stage

Tier Class Real MB/s Scaled Mb/s / 20 Real TB Scaled TB / 20

1 2048 102.4 220 11
2 320 16 100 5
3 10 0.5 20 1

On the Figure 3 we can see the network infrastructure used in our experi-
ment. The graph disposes a nomenclature where the nodes has a first number
that is the tier class, and after the point another identification number. Below
there is the storage size of the node in TB. The networks have assigned two
numbers, the first one is the latency in ms and the other is the bandwidth in
MB/s.

5 Simulation Results

On the following Figure 4 we present Grid simulation results based on the stage
described above. We use Gaussian random walk, that is the best performance for
the state of the art economic OptorSim approach[10]. The mean and standard
deviation job response time is scale in the magnitude of 20 to usual jobs duration
from hours to some days. There are shown three different Grid sizes, expressed in
the number of Grid clients by node and the number of jobs submitted by a Grid
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client. The simulations are pure Data Grid, thus all the Active Time for process
data are run on the Grid client side. We present results for the best performance
LRU over LFU deletion scheme. The OptorSim economic approach also uses
LRU for secondary deletion decisions. The Figure shows the unconditional-LRU
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Fig. 4. Results in Simulated Grid Stage

performances with less dashed line style, the economic with a more dashed lines
style, and the PSO-LRU with continuous line style. The standard deviations are
the tree lines at the bottom, and the average are at the top of the chart. Our
PSO-LRU approach has much better performances than the other algorithms



for average and standard deviation. As it was expected the unconditional used
for base compare, has the worst results. The PSO-LRU approach improve speed
over unconditional in percents of 19%, 36% and 29% for simulation size serial
of 4X4, 5X5 and 6X6. The PSO-LRU approach improve speed over economic
approach in percents of 7%, 18% and 22% for the same simulation serial.

PSO-Grid performance is better due to its features: less control trafic, dis-
tributed optimization, localization and selection services, autonomous manage-
ment of each node will fit best on user and geografical afinities, colaborative
strategie against competitive strategie of the economic, that usually performs
better on the long term.

6 Conclusions and Future Work

We have described two relevant contributions to the Data Grid corpus. The en-
hanced Giggle framework that consider flat RLS structures, opening the door to
the EI and other EAT approaches for the OGSA data Grid replication architec-
ture. Specific PSO-LRU algorithm has been proved as the better performance job
response time and much better scalability features than traditional approaches,
using a full network and disk subsystem simulation, SiCoGrid.

We have open research lines for the following targets: Cyclical graph grid
infrastructure simulations, other emergent EAT algorithms like Ant Colony Op-
timization and a depth variable correlations studies.
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