Replica Refresh Strategies in a Database
Cluster

Cécile Le Pape! and Stéphane Gancarskit

Laboratoire d’Informatique de Paris 6, Paris, France
email : Firstname.Lastname@lip6.fr

Abstract. Relaxing replica freshness has been exploited in database clusters to
optimize load balancing. However, in most approaches, refreshment is typically
coupled with other functions such as routing or scheduling, which makes it hard
to analyze the impact of the refresh strategy itself on performance. In this paper,
we propose to support routing-independent refresh strategies in a database cluster
with mono-master lazy replication. First, we propose a model for capturing existing
refresh strategies. Second, we describe the support of this model in Refresco, a
middleware prototype for freshness-aware routing in database clusters. Third, we
describe an experimental validation to test some typical strategies against different
workloads. The results show that the choice of the best strategy depends not only
on the workload, but also on the conflict rate between transactions and queries and
on the freshness level required by queries. Although there is no strategy that is best
in all cases, we found that one strategy is usually good and could be used as default
strategy. This work was partially financed through the ANR-ARA Respire project.
Keywords: replication, database cluster, load balancing, refresh strategy.

1 Introduction

Database clusters provide a cost-effective alternative to parallel database sys-
tems, i.e. database systems on tightly-coupled multiprocessors. A database
cluster [10,21,22] is a cluster of PC servers, each running an off-the-shelf
DBMS. With a large number of servers, it can reach high performances, and
thus can be used as a basic block for building Grid environments, by group-
ing several database clusters distributed in a large scale network such as the
Internet. The typical solution to obtain good load balancing in a database
cluster is to replicate data at different nodes so that users can be served
by any of the nodes. If the workload consists of (read-only) queries, then
load balancing is relatively easy. However, if the workload includes (update)
transactions in addition to queries, as it is the case in Grid environments,
load balancing gets more difficult since replica consistency must be enforced.
With lazy replication, a transaction updates only one replica and the other
replicas are updated (refreshed) later on by separate refresh transactions [19].
By relaxing consistency, lazy replication can provide flexible transaction load
balancing, in addition to query load balancing.

Relaxing consistency using lazy replication has gained much attention
[1,2,18,25,22,14], even quite recently [11]. The main reason is that applica-
tions often tolerate to read data that is not perfectly consistent, and this

can be exploited to improve performance. However, replica divergence must
be controlled since refreshing replicas becomes more difficult as divergence
increases. In [15], we addressed this problem in the context of a shared-
nothing database cluster. We chose mono-master lazy replication because it
is both simple and sufficient in many applications where most of the con-
flicts occur between transactions and queries. Transactions are simply sent
to a single master node while queries may be sent to any node. Because re-
fresh transactions at slave nodes can be scheduled in the same order as the
transactions at master nodes, queries always read consistent states, though
maybe stale. Thus, with mono-master replication, the problem reduces to
maintaining replica freshness. A replica at a slave node is totally fresh if it
has the same value as that at the master node, i.e. all the corresponding
refresh transactions have been applied. Otherwise, the freshness level reflects
the distance between the state of the replica at the slave node and that at
the master node. By controlling freshness at a fine granularity level (relation
or attribute), based on application requirements, we gained more flexibility
for routing queries to slave nodes, thus improving load balancing.

In most approaches to load balancing, refreshment is tightly-coupled with
other issues such as scheduling and routing. This makes it difficult to analyze
the impact of the refresh strategy itself. For example, refreshment in [22]
is interleaved with query scheduling: it is activated by the scheduler, for in-
stance if a node is too stale to fullfill the freshness requirement of any query in
the scheduler input queue. Furthermore, they do not use routing-dependent
refresh: when no node is fresh enough for a query, the query execution is
delayed, without guarantee on the query liveness. Many refresh strategies
have been proposed in the context of distributed databases, data warehouse
and database clusters. A popular strategy is to propagate updates from the
source to the copies as soon as possible (ASAP), as in [3,4,6]. Another sim-
ple strategy is to refresh replicas periodically [5,16] as in data warehouses
[7]. Another strategy is to maintain the freshness level of replicas, by prop-
agating updates only when a replica is too stale [24]. There are also mixed
strategies. In [18], data sources push updates to cache nodes when their fresh-
ness is too low. However, cache nodes can also force refreshment if needed.
In [14], an asynchronous Web cache maintains materialized views with an
ASAP strategy while regular views are regenerated on demand. In all these
approaches, refresh strategies are not chosen to be optimal with respect to
the workload. In particular, refreshment cost is not taken into account in the
routing strategy. There has been very few studies of refresh strategies and
they are incomplete. For instance, they do not take into account the starting
time of update propagation [23,13] or only consider variations of ASAP [20].

This paper has three main contributions. First, we propose a model which
allows describing and analyzing existing refresh strategies, independent of
other load balancing issues. Second, we describe the support of this model in
our Refresco prototype. Third, we describe an experimental validation based
on a workload generator, to test some typical strategies against different

workloads. The results show that the choice of the best strategy depends not
only on the workload itself, but also on the conflict rate between transactions
and queries and on the level of freshness required by queries. Although there
is no strategy that is best in all cases, we found that one strategy, As Soon
As Underloaded or ASAUL(0), is usually very good and could be used as
default strategy. Our prototype allows to select the best strategy according
to the workload type generated by the application. It is thus compliant with
the OGSA-DALI [17] definition of a Data Resource Manager providing flexible
and transparent access for Grid applications.

The paper is organized as follows. Section 2 describes our database clus-
ter architecture, with emphasis on load balancing and refreshment. Section 3
defines our model to describe refresh strategies. Section 4 defines a workload
model which helps defining typical workloads for experimentations. Section
5 presents our experimental validation which compares the relative perfor-
mance of typical refresh policies. Section 6 concludes.

2 Database Cluster Architecture

CLIENT
send request (query or transaction)

JDBC DRIVER INTERFACE

o

L REQUEST FACTOR LOAD

: forward request FALANGER

1 SCHEDULER CLUSTER STATE MGR

g ; forward request &cLock

< (LoAD EVAL) d

= ROUTER | /cAdsiate LOADEVAY. |88 | Rerrest

| update state """ ™| MANAGER

a UPDATE QUEUE

9 update state

S ask for refr REFRESHER ask for refr,
transaction send refresh sequence

transaction query ory refresh seq. query or | refresh seq.

Fig. 1. Mono-master replicated database architecture

Figure 1 gives an overview of our database cluster architecture. It pre-
serves the autonomy of both applications and databases which can remain
unchanged, which is important for Grid applications which require sites au-
tonomy. It receives requests from the applications through a standard JDBC
interface. All additional information necessary for routing and refreshing is
stored and managed separately of the requests.

We assume that the database is fully replicated: node Ny is the master
node which is used to perform transactions while nodes Ni, Na,..., N, are

slaves nodes used for queries. The master node is not necessarily a single
cluster node which could be a single point of failure and a bottleneck. It is an
abstraction and can be composed of several cluster nodes coordinated by any
eager replication protocol such as [12]. Slave nodes are only updated through
refresh transactions which are sent sequentially, through refresh sequences,
according to the serialization (commit) order on the master node. This guar-
antees the same serialization order on slave nodes. Access to the database
is through stored procedures. Each updating (resp. read-only) procedure de-
fines a transaction class (resp. query class). A query class potentially conflicts
with a transaction class if an instance of the transaction class may write data
that an instance of the query class may read. We formally defined potential
conflicts using conflict classes in [15].

The request factory enriches requests wih metadata such as parameters
for stored procedures and required freshness for a query. Then it sends the re-
quests to a FIFO scheduler. Dynamic information such as transaction commit
time on the master node, data freshness on slave nodes, estimated nodes load,
is maintained by the cluster state manager. The information related to each
transaction is maintained until every node has executed the corresponding
refresh transaction, after which it is removed.

The router implements an enhanced version of SELF (Shortest Execution
Length First). Depending on application needs, the router can be switched to
perform routing-dependent (on-demand) refreshment. To this end, it asks the
freshness evaluation module to compute, for every node, the corresponding
minimum refresh sequence to make the slave node fresh enough for @), and
includes the cost of the possible execution of this sequence into the cost
function. After the eventual on-demand refresh is performed by the refresher
on the selected node, the router sends the query to this node and updates the
cluster state. Since queries are only sent to slave nodes, they do not interfere
with the transaction stream on the master node.

The refresh manager handles routing-independent refreshment. According
to the refresh policy, it receives events coming from different parts of the clus-
ter state manager: load evaluation module, freshness evaluation module or
external events such as time. It then triggers the selected routing-independent
refresh policy which eventually asks the refresher module to perform refresh
sequences. Whenever the refresher sends refresh sequences to a node, it up-
dates the cluster state for further freshness evaluations.

3 Modeling Refresh Strategies

Freshness requirements are specified for access atoms, which represent por-
tions of the database. Depending on the desired granularity, an access atom
can be as large as the entire database or as small as a tuple value in a ta-
ble. A freshness atom associated with an access atom a is a condition on
a which bounds the staleness of a under a certain threshold ¢ for a given

freshness measure p, i.e. such as p(a) < t. If we note a; the copy of access
atom a on the slave node N;, the staleness of a; is computed by p(a;) and
represents the divergence between the value of a; (on the slave node) and the
value of ag (on the master node). The freshness level of a set of access atoms
{a',a?,...,a"} is defined as the logical conjunction of freshness atoms on a'.
In [15] we introduced several freshness measures. For simplicity in this paper,
we counsider only measure Age : Age(ay) denotes the maximum time since
at least one transaction updating a has committed on the master node and
has not yet been propagated on slave node N. The freshness level of a query
Q@ is a freshness level on the set of access atoms read by). Users determine
the access atoms of the query at the granularity they desire, and define a
freshness atom for each access atom. A node N is fresh enough to satisfy Q
if the freshness level of @) is satisfied on N. The freshness level of a node N
is simply the freshness level on the entire database on N.

A refresh strategy is described by the triggering events which raise its
activation, the nodes where the refresh transactions are propagated and the
number of transactions which are part of the refresh sequence. A refresh
strategy may handle one or more triggering events, among;:

— Routing(N, Q): a query @ is routed to node N.

Underloaded(N, limit): the load of node N gets a value less than or equal

to the limit value.

— Stale(N, u, limit): the freshness of node N for measure p decreases below
the limit value. In other words, the freshness level of node N for measure
v and threshold limit is no more satisfied. In this paper, since we only
consider the Age measure, this parameter becomes implicit and the event
can be simplified as Stale(N, limit) which stands for Stale(N, Age, limit)

— Update_sent(T): a transaction T is sent to the master node.

— Period(t): triggers every t seconds.

As soon as an event handled by the refresh manager is raised, the re-
fresher computes a sequence of refresh transactions to propagate. Depending
on the nature of the event, the refresh sequence is sent to a single slave node
or broadcast to all slave nodes. For instance, Routing(N, Q) activates a re-
freshment only on slave node N while Period(t) activates a refreshment on
all the slave nodes. Finally, the refresh quantity of a strategy indicates how
many refresh transactions are part of the refresh sequence. This value can be
minimum, i.e. the minimum refresh sequence which brings a node to a certain
freshness. The maximum value denotes a refresh sequence containing every
transaction not yet propagated to the destination. Of course, the quantity
may also be arbitrary (for instance, a fixed size).

We apply our refresh model to the following strategies, which we imple-
mented and compared, since they are the most popular in the literature.

— On-Demand (OD). On-Demand strategy is triggered by event Routing(N).

It sends a minimal refresh to node N to make it fresh enough for Q.

— As Soon As Possible (ASAP). ASAP strategy is triggered by a Up-
date_sent(T) event. It sends a maximal refresh sequence to all the slave

nodes. As ASAP strategy maintains slave nodes perfectly fresh, the re-
fresh sequence is reduced to the transaction 7" which raised the event.

— Periodic(t). The Periodic(t) strategy is triggered by a period(t) event.
It sends a maximum refresh sequence to all the slave nodes.

— As Soon As Underloaded (ASAUL(limit)). The ASAUL strategy
is triggered by a Underloaded(N,limit) event. It sends a maximum refresh
sequence to IN.

— As Soon As Too Stale (ASATS(limit)). ASATS strategy is triggered
by event Stale(N,limit). It sends a maximum refresh sequence to N.
Hybrid Strategies. Refresh strategies can be combined to improve perfor-
mance. Though a lot a combinations are possible, we focus here on the in-
teraction between routing-dependent (On-Demand) and routing-independent
strategies (all other strategies). Thus, for each routing-independent strategy,
we derive an hybrid version which combines it with On-demand. We ran sev-
eral experiments (not shown here for space limitations) to compare each basic
strategy with its hybrid version. They showed that hybrid strategies always
outperform basic strategies because they never trigger unnecessary refresh-
ments. Therefore in the following, we study only hybrid strategies. In order
to simplify the presentation, we use the same name as the basic strategy,

since there is no ambiguity.

4 Experimental Validation

In this section, we compare the performance of hybrid refresh strategies under
different workloads. After describing our experimental setup and workloads,
we study the impact of conflict rate and of tolerated freshness on performance.

4.1 Experimental Setup and Workload

Our experimental validation is based on the enhanced version of the Re-
fresco prototype, which is developed in Java 1.4.2. In order to get results
independent of the underlying DBMS’s behaviour, we simulated the execu-
tion of a request on a node, with 128 slave nodes, using Simjava, a process-
based discrete event simulation package in Java (see http://www.dcs.ed.
ac.uk/home/hase/simjava/). We chose simulation because it makes it eas-
ier to vary the various parameters and compare strategies. We also cali-
brated our simulator for database access using an implementation of our Re-
fresco prototype on the 64-node cluster system of the Paris team at INRIA
(http://www.irisa.fr/paris/General/cluster.htm) with PostgreSQL as
underlying DBMS. In this case, for typical transactions and queries, the value
of a Time Unit (TU) is approximately 10 ms.

Our main objective is to provide a relative comparison of the refresh
strategies. Therefore, we strive to keep the workload model simple, with a
definition of the main parameters that impact refreshment. Note that our

objective is not to capture all possible workloads which would require a much
more complex workload model and is beyond the scope of this paper.

A workload is composed of several clients. Each client is either of type
transaction or of type query, i.e. it only sends transactions or only queries.
The number of transaction clients is fixed to 16, while the number of query
clients is fixed to 256. Each workload has a total duration of 10000 TU. Each
request is considered as a fixed-duration job: 100 TU for queries and 5 TU
for transactions. We consider that a transaction load (#l) is low (respt. high)
when the transaction clients are active 1/4 (respt. 2/3) of the time. A query
load (ql) is low (respt. high) when queries clients wait 300 TU (respt. 0 TU)
between two queries. All the workloads are parameterized with the conflict
rate (cr) and a tolerated staleness for queries (ts). We define the conflict rate
of a workload as the proportion of potential conflicts between transactions
and queries. Let {T'Cy,TCs,...,TC,} be the application set of transaction
classes and {QC1,QC,,...,QC,,} the application set of query classes. The
conflict rate (cr) of a workload is defined by the following formula :

Yy ey oy x conflict (TG, QCy)
cr = =
Zj:l Qj

where conflict(T'C;, QC;) is equal to 1 if the transaction class T'C; po-
tentially conflicts (see Section 2) with the query class QC;, otherwise it is
equal to 0 and «; is the number of instances of the query class QC; in the
workload. In order to simplify, all the queries in a workload have the same
tolerated staleness, which is the threshold of every query’s freshness level. It is
the maximal staleness a data on a node can have for the query to be executed
on it. For instance, a workload where queries require to read perfectly fresh
data has a tolerated staleness equal to 0. Thus, a workload is described as a
tuple (¢, ql, cr, ts). Not all the parameters do impact on all the strategies. For
instance, the ASAP strategy, which propagates immediately any transaction
sent to the master node, is not sensitive to the ¢r and ts parameters.

4.2 Impact of Conflict Rate on Performance

Figure 2 shows the query mean response time (QMRT, average of the ob-
served response times of queries during the experiment) of the various refresh
strategies versus the conflict rate. As we focus on the conflict rate, there is
no tolerated staleness (ts is fixed to 0), which is the worst case for perfor-
mances. We omit workloads of type (high,low,cr,ts) and (low,high,cr,ts), but
they yield similar conclusions.

Light Workloads. Figure 2(a) shows that, except for very small conflict
rates, the best performance for light workloads is obtained with strategies
that refresh frequently, i.e. maintain nodes (almost) always fresh. These
strategies are ASAP (obviously) and ASAUL since nodes are idle very of-
ten. They trigger refreshment often but do not interfere much with queries

OHRT

160 : L : :
] 8,2 8.4 8.6 9.8 1
conflict rate
asaul{@} periodic{188) LN, asats{188) —f— on demnand —=—
asaul(500) ——— periodic{1800) asats{580) ——— asap —W—
(a) light workloads: (low,low,cr,0)
16008 T T T T
1468
1268
100867
&
X goe
=
688
488
288
l
8
a a,2 8.4 8.6 a.8 1
conflict rate
asaul {8} periodic{188} L asats{188) —f— on denand —=—
asaul {588} ——— periodic{1688} asats{500} ——— asap —W—

(b) heavy workloads: (high,high,cr,0)

Fig. 2. Performance comparisons with varying conflict rate (tolerated staleness=0)

because the refresh sequences are executed mostly during idle periods. In this
context, ASAUL(0) is better than ASAP since it refreshes exactly during idle
periods while ASAP may trigger refreshments during non-idle periods, even
if such periods are rare. On the contrary, On-Demand performs rather poorly
as soon as the conflict rate exceeds 0.4. Indeed, since queries are rare, it is
triggered rarely. Thus, each time a query is routed, the refresher must prop-
agate many updates (since the last refresh) before executing the query. This
increases response time significantly.

Heavy Workloads. In Figure 2(b) , the behavior of the strategies is quite
different from that in Figure 2(a). On-Demand yields the best performance
in most cases (except when the conflit rate exceeds 0.9) because refreshment
is done often (the query frequency is high), but only when needed. In this
context, ASAP is better only for very high conflict rates because it always
refreshes. This is useless for smaller conflict rates where refresh is not fre-
quently required. Similarly, Periodic and ASATS do not perform well. As
they do not take into account the nodes load and perform maximum refresh
sequences, they raise useless overhead when refreshing. We also observe that
ASAUL(0) performs as On-Demand because nodes are never idle.

4.3 Impact of Tolerated Staleness on Performance

Figure 3 shows the performance (QMRT) of the various refresh strategies
versus the tolerated staleness. As we focus here on the tolerated staleness,
the conflict rate is fixed to 1, which is the worst case w.r.t to performances.
High-low and low-high workloads give results similar to high-high and thus
are omitted. A general observation is that, for all strategies except ASAP,
the results are better when the tolerated staleness is higher. Obviously, when
queries do not require high freshness, there is a higher probability that a
node is fresh enough for any query. Thus on-demand refresh is less necessary,
which speeds up query execution. This is not the case for ASAP, since it
does not require on-demand refresh. When the tolerated staleness is beyond
a given value, performance does not change for most strategies. This is due
to the fact that all the nodes are always fresh enough for queries and thus
on-demand is no more triggered. Thus, refreshing nodes is useless for queries.
This is obviously the case for Periodic, but also for ASATS. In fact, ASATS
also behaves periodically in this context. This is due to the fact that trans-
actions are performed periodically on the master node, thus the freshness on
slave nodes always decreases at the same speed. For light workloads, ASAUL
has also a periodic behavior: when a node is idle or lightly loaded, ASAUL re-
freshes it and the node becomes busy. Thus, it is no longer refreshed during a
given duration and gets idle. Then ASAUL refreshes it, and so on. For heavy
workloads, nodes are always busy and thus, as already mentioned, ASAUL is
similar to On-Demand. In particular, as nodes are never idle, ASAUL(0) per-
forms quite the same as On-Demand. On-Demand is always sensitive to the
tolerated staleness. As nodes are refreshed only when necessary, performance
increases as tolerated staleness increases.

358 T T T T
{
388 B
253§ b
-
-3
&
— — 47
288 B
£
150 b
188 L L
a 1088 2800 3080 4080 hae0
tolerated staleness
asaul{@} periodic{188) —f— asats(198) —f— on demand —&—
agzaul (508} ——— periodic{1888) asats{500) ——— asap ——
(a) light workloads: (low,low,1,ts)
1580 T T T T
1439% i
1333[b
1288 1
-
o
£
]

1108 \‘ X l
=
1860 - \‘_, &

968 -
200 ! ! ! !
a 288 408 608 800 18688
tolerated staleness
asaul{a} periodic{1e8} e asats{188) —f— on denand —5—
asaul{(508) ——— periodic{16888)} asats{508) ——— asap ——

(b) heavy workloads: (high,high,1,ts)

Fig. 3. Comparing strategies for varying tolerated staleness and conflict rate 1

Light Workloads. Figure 3(a) shows that On-Demand is outperformed by
strategies which frequently refresh nodes and thus take advantage of nodes
being frequently idle. Among them, ASAUL(0) is the best since it naturally
adapts to idle node events.

Heavy Workloads. Figure 3(b) shows that when the tolerated staleness is
below 100 TU, ASAP is the best strategy, since frequent refreshments are
necessary. From 100 up to 500, PERIODIC(100) and ASATS(100), which
behave equally, are the best strategies. When the tolerated staleness is over
500, the overhead due to frequent refreshment is higher since nodes are never
idle. Furthermore, it is useless since queries do not require high freshness.
In this case, ASAUL(0) is the best strategy since it naturally adapts to idle
node events. For the sake of clarity, values for a tolerated staleness over 1000
are not represesented. They remain constant for all the strategies, except for
ASAUL(500) which still decreases down to 550 for a tolerated staleness of
5000, and for ASAUL(0) and On-Demand which have almost equal perfor-
mance (since nodes are never idle, ASAUL(0) only triggers on-demand) and
decrease down to 300, thus being the best strategies.

5 Conclusion

Relaxing replica freshness can be well exploited in database clusters to opti-
mize load balancing. However, the refresh strategy requires special attention
as the way refreshment is performed has strong impact on response time. In
particular, it should be independent of other load balancing issues such as
routing.

In this paper, we proposed a refresh model that allows capturing (among
others) state-of-the-art refresh strategies in a database cluster with mono-
master lazy replication. We distinguished between the routing-dependent (or
on-demand) strategy, which is triggered by the router, and routing-independent
strategies, which are triggered by other events, based on time-outs or on nodes
state. We also proposed hybrid strategies, by mixing the basic strategies with
the On-demand strategy. We described the support of this model by extending
the Refresco middleware prototype with a refresh manager which implements
the refresh strategies described in the paper. The refresh manager is inde-
pendent of other load balancing functions such as routing and scheduling. In
our architecture, supporting hybrid strategies is straightforward, since they
are simple conjunctions of basic strategies already implemented in the refresh
manager (or in the router for On-Demand).

In order to test the different strategies against different application types,
we proposed a workload model which captures the major parameters which
impact performance: transaction and query loads, conflict rate between trans-
actions and queries, and level of freshness required by queries on slave nodes.

We described an experimental validation to test some typical strategies
against different workloads. An important observation of our experiments is

that the hybrid strategies always outperform their basic counterpart. The
experimental results show that the choice of the best strategy depends not
only on the workload, but also on the conflict rate between transactions and
queries and on the level of freshness required by queries. Although there is
no strategy that is best in all cases, we found that one strategy (ASAUL(0))
is usually very good and could be used as default strategy for the workload
types we defined. As a future work, we plan to continue testing strategies
against other workload types, using a richer workload model. For instance,
we can assign different freshness levels for different queries in the same work-
load, or we can vary the ratio query/transaction in a workload, and so on.
We also plan to integrate the refresh strategies into the multi-master ap-
proach presented in [9], as we suggested in [8]. The work presented in this
paper can be seen as a first step toward a self-adaptable refresh strategy,
which would combine different strategies by analysing on-line the incoming
workload. According to the real-life applications dynamicity, our middleware
should automatically adapt the refresh strategy to the current workload, us-
ing for instance machine-learning techniques.

Our approach currently works on a database cluster. As mentionned in the
introduction, database clusters are good candidates to build large scale Grid
environments. However, this implies that we must adress some new issues to
cope with Grid application requirements. The first issue is the heterogeneity
of the sources. Our approach handles any relational data sources, through
the use of SQL procedure and a standard JDBC driver. We must adapt it to
non-relational data sources, for instance XML documents, for instance using
a mediator/wrapper approach. The second issue is fault-tolerance : we must
distribute our middleware over several nodes, using for instance a shared
memory layer, to prevent it from being a single point of failure. Finally, we
must also adapt our system to large scale distribution, by modifying the cost
function used for load balancing, in order to take into account the different
latencies between different sites.

References

1. R. Alonso, D. Barbard, and H. Garcia-Molina. Data caching issues in an in-
formation retrieval system. ACM Trans. on Database Systems, 15(3):359-384,
1990.

2. D. Barbard and H. Garcia-Molina. The demarcation protocol: A technique
for maintaining constraints in distributed database systems. VLDB Journal,
3(3):325-353, 1994.

3. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil.
A critique of ansi isolation levels. In ACM SIGMOD Int. Conf., 1995.

4. Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz.
Update propagation protocols for replicated databates. In ACM SIGMOD Int.
Conf., pages 97-108, 1999.

5. D. Carney, S. Lee, and S. Zdonik. Scalable application aware data freshening.
In IEEE Int. Conf. on Data Engineering, 2002.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred updates and data
placement in distributed databases. In IEEFE Int. Conf. on Data Engineering,
pages 469-476, 1996.

L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms
for deferred view maintenance. In ACM SIGMOD Int. Conf., pages 469-480,
1996.

S. Gangarski, C. Le Pape, and H. Naacke. Fine-grained refresh strategies for
managing replication in database clusters. In VLDB Wshp. on Design, Imple-
mentation and Deployment of Database Replication, pages 47-54, 2005.

S. Gangarski, H. Naacke, E. Pacitti, and P. Valduriez. The leganet system:
Freshness-aware transaction routing in a database cluster. Information Sys-
tems, To appear.

S. Gangarski, H. Naacke, E. Pacitti, and P. Valduriez. Parallel processing
with autonomous databases in a cluster system. In Int. Conf. On Cooperative
Information Systems (CooplS), 2002.

H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein. Relaxed currency
and consistency: How to say ”good enough” in sql. In ACM SIGMOD Int.
Conf., 2004.

B. Kemme and G. Alonso. A new approach to developing and implement-
ing eager database replication protocols. ACM Trans. on Database Systems,
25(3):333-379, 2000.

S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive framework for
tunable consistency and timeliness using replication. In Int. Conf. on Depend-
able Systems and Networks, pages 17-26, 2002.

A. Labrinidis and N. Roussopoulos. Balancing performance and data freshness
in web database servers. In Int. Conf. on VLDB, pages 393-404, 2003.

C. Le Pape, S. Gangarski, and P. Valduriez. Refresco: Improving query per-
formance through freshness control in a database cluster. In Int. Conf. On
Cooperative Information Systems (CooplS), pages 174-193, 2004.

H. Liu, W.-K. Ng, and E.-P. Lim. Scheduling queries to improve the freshness
of a website. World Wide Web, 8(1):61-90, 2005.

S. Malaika, A. Eisenberg, and J. Melton. Standards for databases on the grid.
SIGMOD Rec., 32(3):92-100, 2003.

C. Olston and J. Widom. Offering a precision-performance tradeoff for aggre-
gation queries over replicated data. In Int. Conf. on VLDB, 2000.

E. Pacitti, P. Minet, and E. Simon. Fast algorithms for maintaining replica
consistency in lazy master replicated databases. In Int. Conf. on VLDB, 1999.
E. Pacitti and E. Simon. Update propagation strategies to improve freshness
in lazy master replicated databases. VLDB Journal, 8(3—4):305-318, 2000.

U. Réhm, K. Béhm, and H.-J. Schek. Cache-aware query routing in a cluster
of databases. In IEEE Int. Conf. on Data Engineering, 2001.

U. R6hm, K. Béhm, H.-J. Schek, and H. Schuldt. Fas - a freshness-sensitive
coordination middleware for a cluster of olap components. In Int. Conf. on
VLDB, 2002.

Y. Saito and H. M. Levy. Optimistic replication for internet data services. In
Int. Symp. on Distributed Computing, pages 297-314, 2000.

S. Shah, K. Ramamritham, and P. Shenoy. Maintaining coherency of dynamic
data in cooperative repositories. In Int. Conf. on VLDB, 1995.

H. Yu and A. Vahdat. Efficient numerical error bounding for replicated network
services. In Int. Conf. on VLDB, 2000.

