
Overlapped Regions with Distributed Spatial Databases
in a Grid Environment

Wladimir S. Meyer1, Jano Moreira de Souza2
1 Computer Science Department, Graduate School of Engineering

Federal University of Rio de Janeiro (UFRJ)
PO Box 68.511 - ZIP code: 21945-970 – Rio de Janeiro, RJ - Brazil

2 Computer Science Department, Institute of Mathematics
Federal University of Rio de Janeiro - Brazil

{wsmeyer,jano}@cos.ufrj.br

Abstract. Grid computing is becoming a natural tendency to be adopted in
geographic information systems (GIS). Its characteristics, based strongly in
resource sharing and standardization in critical areas like interfaces, security
and data transfer, attract the attention of GIS research. On the other hand the
design of distributed spatial Databases (DSDB) behind this information
Systems contains many kinds of challenges inherited from both distributed
database and spatial database areas. The performance of queries in a weakly-
coupled environment, where data is spread, is one of the most important goals
to be reached. Based on the Secondo-grid [1], a framework proposed to be used
as test bed for distributed spatial databases, this paper introduces some
modifications to allow the exploration of parallelism when executing queries
over spatial databases servers in a computational grid. A federated architecture
using spatial data partitioning with some level of overlapping, and the adoption
of local index structures for spatial data, are behind the environment proposed.
A query broker is suggested to generate and address the subqueries to correct
servers based on data locations and servers status. Web services offered by the
grid middleware are used to provide reliable file transfer, database register,
replica location, and automatic monitoring of resources. Every time a region of
interest is stored in more than one server, the query is split into the
correspondent number of subqueries to be executed simultaneously and, after
the processing is done the results are transferred and combined in the requestor
machine.

1 INTRODUCTION

Distributed GIS is becoming a natural tendency as a decision support tool for many
organizations from the most diverse areas of research around the world.
Environmental pollution, deforestation monitoring and control, urban security and
geological studies are some of them. The complexity of geographic data is frequently
responsible for the specialization in its generation and the sharing of elements like

huge amounts of data, specialized algorithms and computational resources has been
attracting the interest of organizations as a whole. Governmental organizations,
private organizations and research centers may act either as data sources or as data
consumers and they may combine their resources to make up a distributed GIS that
looks like a single entity from a client point-of-view. Issues related to integration of
several spatial database management systems (SDBMS) belonging to different owners
take a major grade of relevance in this scenario.

This work intends to cover the case of a distributed GIS developed in a top-down
manner with an unique global schema being adopted by all member organizations.
With this approach the rules to become a member of this virtual organization (VO)
must be followed by all candidates. The solution proposed may be adopted, for
example, by governmental organizations involved with the systematic mapping of
defined regions, as in the case of Brazil. The top-down design means that there are no
legacy systems incorporated in a new system. The purpose of this work is to present
an architecture which allows reducing the time spent in queries that are executed over
distributed SDBMS servers linked in a weak manner, like in the Web, based on
parallelism and on the dynamic selection of remote SDBMSs that should respond to
the query. The scalability of this solution is guaranteed by an adequate use of grid
tools based on stateful Web services that are present in the Globus Toolkit release 4
[2].

The tight relationship between Distributed GIS and Distributed Spatial Database
Management Systems (DSDBMS) has motivated much research focused in the latter
one. DSDBMS connects problems from both domains: distributed systems and spatial
databases management systems. Related to the former, some aspects like transmission
costs, access control and replica locations may be highlighted. From the latter domain,
aspects like long transactions, complex elements and spatial operators should receive
special attention from researchers.

A data partitioning policy for local SDBMS should be chosen to be implemented.
These policies may use a thematic approach; in this case each SDBMS stores
specifics layers (themes related to a domain) or each of them stores all themes about a
specific geographic region. In some case hybrid solutions can be adopted. In this
work, the solution proposed involves a federated architecture and a data partitioning
arrangement that follow a geographic region division.

Another important topic involving these kinds of database is concerned with spatial
index structures that are used with operations that act over spatial data as spatial join
and spatial select. R-trees and Quadtrees are the most commons structures used.

The infrastructure needed to support DSDBMS in a DGIS context should be
capable of:

• offering a reliable manner to transfer huge amounts of data,
• authenticating users at once to allow access to all local SDBMS

transparently,
• offering access only to authorized resources,
• hiding resource locations from final users,
• providing ways to guarantee data security.

Computational grids may attend adequately the needs above for a DSDBMS
infrastructure. The virtual organization concept allows one to aggregate data sources
and other resources from different organizations as if they were part of an unique

organization despite of their locations. Another important feature of this environment
is that an user can be authenticated in these VO only: there is no need to follow this
step for each local SDBMS. The grid access control can supply an accurate
granularity of access to address a specific resource. More recent grid tool kits, like
Globus 4, offer a set of powerful tools, based on Web services, which permit reliable
file transfer, registering, monitoring, discovery resources, and so on. These abilities
qualify the computational grid as an adequate platform to be used as base
infrastructure in a distributed GIS. Recently, many works adopted computational
grids with this purpose [3-6].

In this work, the architecture proposed intends to explore some functionalities of a
grid environment to permit building, in a top-down manner, a federated spatial
database structure to be adopted in a GIS context. Like the work presented in [7] this
architecture uses Web services and an index structure based on R-trees constructed in
each node (database server). A global schema and a fragment map are published in a
central server [1] to be accessed by all grid members. A macro region must be split
into smaller regions based on a regular grid. As a suggestion, the grid defined by the
millionth map, the International Map of the World , can be used.

2. RELATED WORK

In [3] an approach based on a virtual organization (VO) over a computational grid is
suggested to solve several previously described problems as reliable data transmission
and resource sharing, capable of integrating different organizations. However no
considerations were made on the accesses in spatial databases, but only execution of
geographic models in both parallel and single contexts. The architecture proposed was
studied and a relation between the response time from both single processor and
multi-processors was established. Using that relation, in theory, it is possible to
determine the number of processors needed to have a specified response time. That
solution is aimed at the use in multi-agency geospatial projects involving the
collaboration of scientists, policy-makers, members of the public, and the approach
involving a virtual organization was the most adequate.

The use of Web services as seen in [7] was a powerful solution the authors found
to reach scalability in an infrastructure designed to optimize query processing in
distributed spatial databases (DSDB). The scenario presented consists of independent
organizations that produce data which may be overlap geographically. This data is not
intentionally replicated over the members’ nodes. A global index, based either on R-
tree or Quadtree, is maintained in each node during all the time and if some localized
data modification causes a change in its minimum bounding rectangle (MBR), all
index replicas are updated. A query submitted to a node is then forwarded to other
nodes that were involved with it. The main goal was to reduce the traffic among
nodes, improving queries response. The use of a global index distributed over the
nodes had an important role in this context.

The Gridbus project [8;9] is related to the construction of a high level broker that is
capable of finding the best way to request data from a set of machines that belong to a
computational grid. Factors like bandwidth, capability and performance of a resource

are used to schedule the computers that will be responsible for the execution of a sub
job. The Gridbus runs over several kinds of grid middleware like Globus, Nimrod-G
and so on.

The current work intends to use some of the previous concepts to cover specifically
distributed spatial databases spread in a computational grid. Share spatial data and
break spatial queries, based on data locations and on resource status, are some of the
desirable features of the proposed environment.

3. THE SOLUTION PROPOSED

This work covers a small segment of Distributed GIS that is involved with the
production of geospatial data from well defined regions as it can be seen in several
governmental agencies around the world. In Brazil, the Directory of Geographic
Service (DSG) is one of the governmental organizations that systematically maps the
country as a whole, its five sub organizations are responsible for mapping specific
regions of the territory. In this specific case, an organization is responsible for the
generation of several thematic data items. A huge amount of spatial data is generated
by this kind of organization and the sharing of these data, for query purpose, is a
considerable challenge.

The solution proposed consists of linking several SDBMS servers that produce and
store spatial and non-spatial data from regions belonging to a regular grid. To make
the approach easier, the regions’ grid was based on the millionth map of the world
[10] as shown in Fig.1.

Fig. 1. The millionth map articulation and its subdivision until 1:100,000 scale

With this regular grid, a region equivalent to a 1:100,000 chart could be named as
SE-23-X-C-I, for example, and the geographic limits of this region could be
expressed as: long 45° W (left border), long 44.5° W (right border), lat 17° S (upper
border) and 17.5° S (bottom border). Each cell corresponds to a region of 30’x 30’,
when talking about 1:100,000 regions.

Each server has the roles of data producer and also of replica updater.
Complementarily, each of them stores the contents of fifty percent of cell located at
North, South, East, West and twenty five percent of cells located at SW, SE, NW and
NE (a cell is a region unit belonging to the regular grid) as in Fig. 2.

I II III I II III I II III

IV V VI IV V VI IV V VI

I II III I II III I II III

IV V VI IV V VI IV V VI

Y - A

Y - D

V X - C

X - BX - A

X - D

1 2 3

6

7 8 9

4 5

30'

30'

1º

A regular cell equivalent to a map in 1:100,000 scale

The extended area stored with a regular cell

Fig. 2. Regions stored in a database server

This extra data however, has the sole purpose of reducing the time spent with
queries involving adjacent regions, since the overlapped area can be subdivided
during query processing to allow a parallel approach. Only the producer of the data
should have the authority to update it when necessary. This policy guarantees data
integrity since each region has an unique owner enabled to write, update or delete
objects from it. If the query’s region is totally included in the area covered by a local
SDBMS, its original region plus the extended area, the user may choose to use only
that machine to process the entire query, avoiding costs with data transmission but
increasing the cost of processing.

The information on which server stores a specific region is published in a central
MDS and can be delivered to any server in the virtual organization.

This information will be used by the broker module when determining the servers
that may receive the sub queries.

When a new SDBMS intends to join the structure it should inform the central MDS
about the region stored that it will share with the others servers. It should also request
the extended region adjacent to it from the other servers.

Spatial indexes are generated locally on each node and must be updated when
some change in the spatial data produces a modification in its minimum bounding
rectangle (MBR) that is the basis of the R-tree mechanism.

The extended region consists of twelve pieces that correspond to quadrants (NW,
NE, SE, and SW) from the adjacent regular cells.

A computational grid infrastructure is built to reach those desirable features listed
in section 1. The grid middleware adopted was Globus because of its powerful set of
tools already employed in several important research projects like GridBus [8],
GriPhyN [11], High Energy Physics at CERN[12] and so on.

A prototype is being built using the Secondo-grid framework presented in [1].
Some modifications were made, specifically on the partitioning of spatial data that
was changed from a thematic to a regional kind, the latter employing a level of
overlapping as explained before.

Each server stores several kinds of themes like hydrography, buildings, roads,
vegetation and so on. It was also necessary to change the routine used to split the
global query into sub queries (the broker) to support parallel processing by the
servers. Since the Secondo grid is a framework for studying spatial databases in a
grid, others query brokers may be implemented for the purpose of performance
testing, allowing comparisons between them. The broker used in this prototype is
shown in Fig. 3.

All of this structure was inherited from the original framework but the Query Plan
Maker Module was modified to split the queries depending of the region being
queried and to understand the new format of the fragments map, based on region and
not on themes.

A global schema and a fragments map are published in a central server that is
running a monitoring and discovering service (MDS), as in the original framework, to
be accessed by all grid members. The Global Schema is a GML document that can be
accessed with xPath sentences.

Each local SDBMS server has a Java container with a set of grid services running
as proposed in [1]: MDS, RFT, GRAM and RLS.

Query Plan Maker Query Execution Monitor

Central MDS GRAM

re
qu

es
tG

lo
ba

lS
ch

em
a(

)

G
lo

ba
l s

ch
em

a

m
on

ito
rR

es
ou

rc
es

S
ta

tu
s(

)

R
es

ou
rc

es
 s

ta
tu

s

su
bm

itS
ub

Q
ue

rie
s(

)

R
es

ul
ts

Global result

Global Query Plan Processor (broker)

Global query

re
qu

es
tF

ra
gm

en
tL

oc
at

io
n(

)

Fr
ag

m
en

t L
oc

at
io

n

MDS
MDS

MDS

Sub
queries

Fig. 3. Global query plan processor (broker)

3.1. SYSTEM OVERVIEW

To reinforce some characteristics of the architecture proposed, some important
features are summarized below:

− The overlapped regions may be used by the owner of a regional server to
link adequately the trespassing objects, avoiding discontinuities in the region’s
border;

− Replicas are automatically updated by means of the Replica Location
Service, the Monitoring and Discovery Service and the Reliable File Transfer
Service;

− Parallelism is used to improve queries based on architecture;
− A broker is responsible for query and region subdivision after a global

query is supplied;
− A new SDBMS can be more easily added to an existing system, since all of

them have the same functionalities and must know only the IP address of the
central MDS server to be capable of acquiring the global schema and the
fragments map. Moreover, this SDBMS should register its stored region in the
central MDS;

− On each server the 300% increase provided by the extra area makes it
possible to run queries near the region’s border in a unique site when

necessary. This can be the case when an adjacent server is out of order or
powered off;

− The index structure is local, thus avoiding unnecessary traffic increments;
− There is not a global mediator and each server has the necessary abilities to

control locally all steps needed to proceed with a query execution, a replica
update and so on. The only central resource is the central MDS service,
responsible for supplying the nodes either with a global schema or with a
fragments map;

If there is more than one database server storing the same region from the regular
cell, the broker of the requestor machine is capable of deciding about the best one to
address the sub-query, based on information collected from their MDS services. A
small program was developed to collect some necessary information such as CPU
load, total amount of memory, total amount of free memory, number of running
processes, number of active processes, number of users logged in, and the total
amount of free space in the hard disk. The result is that when the MDS is asked about
this information the program is called and, having collected the necessary data a XML
document is generated.

3.2. MODULES DESCRIPTION

To describe the environment, the explanation will be subdivided in two modules: a
query processor and a replica management module.

The first one starts when a user fills the query form which is embedded in the
Secondo’s Graphic User Interface and a routine checks its syntax to avoid typing
mistakes.

At this moment, if there is not a global schema replica stored locally, it is requested
to the central MDS. The result, returned in XML format, is loaded on memory to
increase future queries. This schema is helpful to a semantic analysis of non-
topological associations. The fragments map is also read and stored locally to allow
the broker to find the servers that store regions that intersect the query's region. Since
the region covered by the query is directly acquired from the onset, the indexes of
regions, from millionth map, which intersect it, are discovered before and the
fragments map is scanned to discover the servers that store them.

Afterwards, the query's region is split into smaller regions, to be addressed to
specifics servers. If there is more than one server storing a region the broker should
request their status through the local MDS. With this information, the server that
provides the best conditions should be chosen. These conditions must be pre-defined
by the local administrator.

After all these preliminary steps, the servers, the sub-queries, and the regions that
they must process are defined and job description files should be generated to be sent
to each of them. These files are submitted to their respective GRAM servers and the
same number of end-point-reference (EPR) is created locally to handle the job status.
The job description files must inform the remote machines, the results generated
being to the requestor.

The final result is obtained from the partial results combination and, if errors are
detected, they should be informed in the GUI. The integrated viewer in Secondo GUI
could be used to show the result.

All the interactions with remote machines are made by means of Java client stubs
that provide an adequate manner to activate the grid Web services: MDS, GRAM and
so on.

The module responsible for replica management has as main function the updating
of replicas when the original one is changed. After data about a region is updated by
its owner, the modified quadrants must be saved in specific files; for example, if the
southwest quadrant from SE-23-X-C-I was modified, the owner would have to save
the new southwest quadrant in the file SW-SE-23-X-C-I. On each server, the
quadrants’ files are registered with the MDS and RLS. MDS registration triggers an
action every time the file is changed and RLS registration permits to determine where
each replica is stored. The action associated with the MDS trigger must generate as
many jobs as replicas to be submitted to the remotes servers. The job description files
make use of the RFT service for all transfer tasks. The four quadrants from a region,
SE, SW, NE, and NW have specific files associated to them in the format: SE-XX-
XX-X-X-X, SW- XX-XX-X-X-X, NE- XX-XX-X-X-X, NW-XX-XX-X-X-X, where
XX-XX-X-X-X is the millionth index.

It is important to emphasize that only the themes changed by the owner should be
transferred to remote machines. When replicas are updated, the administrators for the
machines involved should load and re-index them to reflect the changes made.

4. SOME PRELIMINARY RESULTS

The prototype of the current architecture is under construction and not all
functionalities are activated, but some tests were made, in the attempt to validate it.
Two kinds of tests were evaluated to provide information on response time to queries.

The first one is based on a simple query for a specific theme which is into a region
corresponding to a 1:100.000 scale map, this region corresponding to a cell of the
millionth map as seen before. The queries in this case can be seen as spatial selects
and themes with the three standard geometry types were used (point, line and region).
All themes were pre indexed with R-trees.

The second kind of tests involves spatial joins over two themes. Some theme
combinations with different geometries were made: line x line (LL), line x point (LP)
and point x point (PP).

All tests were executed in three situations: the whole query at once in a single
machine that stores a millionth map (referred as “1 slice” in tables below), the query
over the same region split into four slices (NW, NE, SE, and SW) distributed among
four identical machines (referred as “4 slices” in the tables below) and the query over
the same region split into nine slices, distributed among nine identical machines
(referred as “9 slices” in the tables below). In a real situation, these nine machines are:
the server owner of the map and one’s eight neighbours (servers that store the
adjacent regions).

Tests involving cost for communications and processing of trespassing objects
have not been executed yet. However, some simulations were made based on a
network with pass-width of 256kbps and the files generated by the tests described
above.

4.1. THE RESULTS

The region used for all tests is the SE-22-X-B-III and the queries used in the tests are
presented in Table 1. Results acquired from the tests are presented in Tables 2 and 3,
respectively. The notation “NW (SE-XX-X-X-X)” means the northwest from region
SE-XX-X-X-X and, in a similar manner, the notation “1 (SE-XX-X-X-X)” means the
slice number one from region SE-XX-X-X-X. The tables show the CPU response
time (RT) spent to perform each result and the time needed to write the results to a
file (I/O). All times presented are in “ms”, and RTi means the response time spent
executing the query in the “i-nth” server, while the RT is the worst case (just one
slice).

Table 1. Queries employed with tests

Test Query

I
Select all drain_lines from SE-22-X-B-III
Select all edifications from SE-22-X-B-III
Select all vegetations from SE-22-X-B-III

II
Select tracks that are crossed by drain_lines (LL)
Select edifications with distance < 100m from tracks (LP)
Select edifications with distance < 1000m from schools (PP)

Table 2. CPU time spent with queries from the first kind

CPU I/O RT N° obj Size(B) CPU I/O RT N° obj Size(B) CPU I/O RT N° obj Size(B)

SE-22-X-B-III 59942 1454 61396 2445 2355 91 2446 1382 59780 3019 62799 268

NW(SE-22-X-B-III) 14008 407 14415 708 767 30 797 456 48492 24032 1095 25127 80
NE(SE-22-X-B-III) 13804 428 14232 759 605335 641 25 666 373 22765 1053 23818 44
SE(SE-22-X-B-III) 10987 354 11341 558 612 22 634 324 27242 1217 28459 96 1910523
SW(SE-22-X-B-III) 9693 322 10015 480 425 16 441 229 20666 938 21604 74

Total 14415 2505 797 1382 28459 294
0,235 0,326 0,453

1 (SE-22-X-B-III) 5525 181 5706 313 503 19 522 262 27920 7707 357 8064 24
2 (SE-22-X-B-III) 5756 193 5949 394 296051 313 12 325 151 13024 638 13662 34
3 (SE-22-X-B-III) 5038 173 5211 298 415 38 453 222 9574 441 10015 19
4 (SE-22-X-B-III) 4868 166 5034 236 318 11 329 157 12969 589 13558 69
5 (SE-22-X-B-III) 5916 200 6116 347 186 5 191 61 17982 896 18878 48
6 (SE-22-X-B-III) 5600 199 5799 325 265 10 275 126 12595 670 13265 24
7 (SE-22-X-B-III) 3971 149 4120 230 259 9 268 124 8225 378 8603 21
8 (SE-22-X-B-III) 3651 135 3786 196 200 6 206 82 11817 510 12327 20
9 (SE-22-X-B-III) 4545 161 4706 238 392 14 406 197 13788 607 14395 72 961953

Total 6116 2577 522 1382 18878 331
0,100 0,213 0,301

1 SLICE

9 SLICES
RT i MAX / RT

RT i MAX / RT

Vegetation (region)Drain Line (line) Edification (point)

4 SLICES

Table 3. CPU time spent with queries from the second kind

4.2 REMARKS ABOUT THE RESULTS

In these preliminary tests, only two small shares from the whole response time
expression (RT) [13] were observed: processing time (TCPU) and input/output time
(TI/O).

RT = TMSG * #messages + TTX * #bytes + TCPU + TI/O (1)

 RT FINAL = max{RT1, RT2, …RTi} i = number of servers working in parallel (2)

Final response time, when queries are running in parallel, is the maximum from all
of the response times computed for each SDBMS server.

The first two terms from equation (1) are expected to be dominant in a real context
and involve the time spent with message exchange and time spent with data transfer
after queries execution. In a hypothetical situation with a network band width of 256
kbps, we could have the new overall response time for each kind of test (Table 4).

We see by the results found that the time spent with CPU and I/O processing in all
tests was very good. The relative response time for these two terms fell to values
between 23,5% and 45,3% from the original response time when executing tests from
the first kind with four slices, while the results were better when the original query
was split into nine subqueries over the nine servers: 10% to 30.1%.

When running tests involving join operations, which are much more complex than
the first kind, the improvement seen remained very good, with response times ranging
from 3.8% to 18.5% from the original.

Despite the good results we observed that in some cases the number of objects
returned by queries was a little different when comparing the same test with one, four,
and nine slices. This fact is related to the existence of trespassing objects that, in some
circumstances, are processed more than once. It is expected that at the end, after
combining query results, these duplicated objects would be eliminated from the final
result.

CPU I/O RT N° obj Size(B) CPU I/O RT N° obj Size(B) CPU I/O RT N° obj Size(B)

SE-22-X-B-III 218598 419 219017 506 113914 116 114030 495 1979 9 1988 67

NW(SE-22-X-B-III) 20032 251 20283 125 10428 20 10448 157 6992 693 7 700 18
NE(SE-22-X-B-III) 31934 147 32081 173 178642 11639 15 11654 131 388 2 390 10
SE(SE-22-X-B-III) 17049 137 17186 118 7924 9 7933 127 419 6 425 25
SW(SE-22-X-B-III) 12751 92 12843 97 4384 8 4392 80 345 5 350 14 698

Total 32081 513 11654 495 700 67
0,146 0,102 0,352

1 (SE-22-X-B-III) 7870 55 7925 73 3689 6 3695 83 3739 366 2 368 18 867
2 (SE-22-X-B-III) 6288 44 6332 58 2086 6 2092 43 314 2 316 3
3 (SE-22-X-B-III) 10337 86 10423 99 113289 4335 5 4340 83 333 1 334 5
4 (SE-22-X-B-III) 4623 38 4661 42 2066 8 2074 71 325 1 326 1
5 (SE-22-X-B-III) 4350 32 4382 42 1154 6 1160 33 292 2 294 1
6 (SE-22-X-B-III) 6262 35 6297 52 2154 7 2161 50 293 2 295 2
7 (SE-22-X-B-III) 4391 57 4448 55 1397 6 1403 26 303 6 309 11
8 (SE-22-X-B-III) 3474 30 3504 32 1066 4 1070 24 300 7 307 13
9 (SE-22-X-B-III) 6738 69 6807 73 3299 9 3308 80 336 5 341 13

Total 10423 526 4340 493 368 67
0,048 0,038 0,185

LINE x LINE LINE x POINT POINT x POINT

RT i MAX / RT

1 SLICE

4 SLICES

RT i MAX / RT
9 SLICES

Table 4. Total Response Time with a hypothetical band-width of 256 kbps

The sizes of files generated during the tests directly affect communication costs.

The larger file generated, when using four regions, had 1.8MB whereas the largest
one, when working with nine slices had 939KB. It is clear that, in some scenarios, the
cost to transfer these files could be very high.

The simulations also give us a good scenario. When working with nine servers the
sizes of files are smaller, reducing communication costs and, as result, we have the
relative response time ranging from 3.91% to 19.84%.

5. FINAL REMARKS

To improve response times related to a distributed query, the final cost of the
operation should be reduced. This cost is made of processing and communication
costs, the latter one usually having greater impact on the final response time. Despite
the reduction of the number of messages exchanged between servers, it is important to
emphasize the need for an adequate operating system and network tuning when using
high performance network paths [14]. The number of buffers and their sizes are some
items that should be checked.

Load balance is another big challenge to be highlighted since geographic slices
produced by the broker do not consider the nature of data inside them. In some
circumstances servers with low processing power receive areas more complex than
others with high processing power increasing response time. So other algorithms
should be tried in the broker module to supply better results when the nature of data is
not uniform between regions.

The flexibility offered by Secondo, as a SDBMS, allows the use of specific data
models, like temporal, climate, etc., and can open a new range of possibilities,
enabling, for example, research with mobile objects in this DSDBMS environment.

On the other hand the power of the GT4 middleware, increased by the use of
stateful Web services, can allow an easier sharing of new services tailored for this
distributed environment.

As major challenge we can emphasize the need of research involving more
sophisticated brokers capable of optimizing the global query under many
circumstances like cost (time, resource value), resource performance, load balance,
trespassing objects, and resource locations.

RT MAX RT COM RT TOT RT MAX RT COM RT TOT RT MAX RT COM RT TOT

1 slice - - 61396 - - 2446 - - 62799
4 slices 14415 18473 32888 797 1480 2277 28459 58305 86764
9 slices 6116 9035 15151 522 852 1374 18878 29356 48234
Query Time (4 slices) % 53,57 93,08 138,16
Query Time (9 slices) % 24,68 56,18 76,81

RT MAX RT COM RT TOT RT MAX RT COM RT TOT RT MAX RT COM RT TOT

1 slice - - 219017 - - 114030 - - 1988
4 slices 32081 5452 37533 11654 213 11867 700 21 721
9 slices 10423 3457 13880 4340 114 4454 368 26 394
Query Time (4 slices) % 17,14 10,41 36,28
Query Time (9 slices) % 6,34 3,91 19,84

Line x Line Line x Point Point x Point

Drain Line Edification Vegetation

The proposed architecture showed good results related to response time involving
CPU and I/O processing, but only complementary tests capable of covering
communication costs could give us the knowledge necessary to establish the context
where it can be better employed.

6. REFERENCES

 [1] Meyer, Wladimir Silva, Souza, Jano Moreira, and Ramirez, Milton Ramos.
Secondo-grid:An Infrastructure to Study Spatial Databases in Computational
Grids. VII Brazilian Symposium on Geoinformatics. 2005. Campos do
Jordão-SP, VII Brazilian Symposium on Geoinformatics.

 [2] Foster, Ian. A Globus Toolkit Primer Describing Globus Toolkit Version 4 -
Draft. 24-2-2005.

 [3] Shi, Yi, Shortridge, Ashton, and Bartholic, Jon. Grid Computing for Real
Time Distributed Collaborative Geoprocessing. 2002.

 [4] Ilya, Zaslavsky, Memon, Ashraf, Petropoulos, Michalis, and Baru, Chaitan.
Online Querying of Heterogeneous Distributed Spatial Data on a Grid.
2004.

 [5] Wang, Yufei, Ge, Linlin, Rizos, Chris, and Babu, Ravindra. Spatial Data
Sharing on Grid. 2005.

 [6] Zhao, P., Chen, A., Liu, Y., Di, L., Yang, W., and Li, P. Grid Metadata
Catalog Service-Based OGC Web Registry Service. 2004.

 [7] Roger Zimmermann, Wei-Shinn Ku, and Wei-Cheng Chu. Efficient Query
Routing in Distributed Spatial Databases. 2004.

 [8] Venegupal, Srikumar, Buyya, Rajkumar, and Winton, Lyle. A Grid Service
Broker for Scheduling Distributed Data-Oriented Applications on Global
Grids. 2004.

 [9] Buyya, Rajkumar and Venegupal, Srikumar. The Gridbus Toolkit for Service
Oriented Grid and Utility Computing: An overview and Status Report. 2004.

 [10] United Nations. Annual Report on The International Map of the World of
Millionth Scale. 1951. NY, Social and Economic Affairs Division.

 [11] Zhao, P., Wilde, M., Foster, Ian, Voeckler, J., Jordan, Thomas, Quigg,
Elizabeth, and Dobson, J. Grid Middleware Services for Virtual Data
Discovery, Composition, and Integration. 2004.

 [12] Stockinger, Heinz. Distributed Database Management Systems and the Data
Grid. 18th IEEE Symposium on Mass Storage Systems and 9th NASA
Goddard Conference on Mass Storage Systems and Technologies. 2001. San
Diego, CERN (European Organization for Nuclear Research).

 [13] Özsu, M. T. and Valduriez, P. Principles of Distributed Database Systems,
Prentice-Hall, 1999.

 [14] Mathis, Matt and Reddy, Raghu. Enabling High Performance Data Transfers
[PSC]. Advanced Networking - Pittsburgh Supercomputing Center . 2006

