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Abstract. The process of simulating and optimizing complex mechanical and
electronical systems is a very time consuming and computationally intensive task.
As a result, metamodeling techniques are often used for the efficient exploration
of the design space, as they reduce the number of simulations needed. However,
conventially such metamodels are constructed sequentially, without exploiting in-
herent parallelism. To tackle this inefficient use of resources we propose a frame-
work where modeler and simulator interact through a distributed environment,
(using established grid computing techniques) thus decreasing model genera-
tion and simulation turnaround time. This paper provides evidence that such a
distributed approach for adaptive sampling and modeling is worthwhile investi-
gating. Research in this new field can lead to even more innovative automated
modeling tools for complex simulation systems.

1 Introduction

Computer based simulation has become an integral part of the engineering design pro-
cess. Rather than building real world prototypes and performing experiments, applica-
tion scientists can build a computational model and simulate the physical processes at
a fraction of the original cost. However, despite the steady growth of computing power,
the computational cost to perform these complex, high-fidelity simulations maintains
pace. For example, Ford Motor Company reports that one crash simulation on a full
passenger car still takes about 36 to 160 hours [1]. Luckily, most of these simulations
can be reduced to parallel parameter sweep applications. These consist of several in-
stances of the simulator that are run independently for different input parameters or
datasets. Due to the inherent parallelism this can be done in a distributed fashion thus
significantly reducing “wall-clock” execution time.

For most realistic problems the high computational cost of simulator codes and
the high dimensionality of the design space simply prohibit this direct approach, thus
making these codes unusable in engineering design and multidisciplinary design opti-
mization (MDO). Consequently, scientists have turned towards upfront approximation
methods to reduce simulation times. The basic approach is to construct a simplified ap-
proximation of the computationally expensive simulator (e.g.: aerodynamic drag gen-
erated by a particular airfoil shape [2]), which is then used in place of the original code
to facilitate MDO, design space exploration, reliability analysis, etc. [1] Since the ap-
proximation model acts as surrogate for the original code, it is often referred to as a
surrogate model or metamodel. Examples of such metamodels include Kriging mod-
els, Artificial Neural Networks, Support Vector Machines, radial basis function models,
polynomial and rational models.



The remainder of this paper is structured as follows: In section 2 we discuss the mo-
tivation for constructing parametrized metamodels while section 3 gives an overview
of similar research efforts and related projects. Section 4 describes the design and pro-
totype implementation of our framework and section 5 some preliminary performance
results. We conclude with a critical evaluation and pointers to future work.

2 Motivation

The reasons for constructing metamodels are twofold: On the one hand metamodels
are often used for efficient design space exploration, on the other hand they are used
as a cheap surrogate to replace the original simulator. When performing an optimum
search, the metamodel guides the search to potentially interesting regions (local min-
ima) [2,3]. Once an adequate solution has been found, the model is discarded. When
building a global, scalable model, the metamodel itself forms the object of interest. Here
the goal is to construct a parametrized metamodel that can entirely replace the original
objective function in the design space of interest. This is useful since the metamodel is
much cheaper to evaluate. Once constructed the metamodel is retained and the objective
function discarded. In this paper we are primarily concerned with the latter.

However, constructing an accurate metamodels is no trivial undertaking. In some
cases it remains questionable if a usable metamodel can be constructed at all. Even if
an accurate metamodel is feasible, the process of building it still requires evaluations of
the original objective function. Therefore, if the process of constructing a metamodel
requires, say, 80 function evaluations and each evaluation takes 10 hours the rate at
which the design space can be explored is still relatively low. Nevertheless, the authors
argue that this is justifiable since it is a one time, up front investment.

To help tackle this bottleneck we propose a framework that integrates the automated
building of metamodels and the adaptive selection of new simulation points (sequential
design) with the distributed evaluation of the cost function. This framework will build
upon previous work in modeling [4,5,6] and distributed systems [7,8].

3 Related Work

Research efforts and tools that integrate modeling and design space exploration tech-
niques with grid computing techniques can be divided into two categories: those catered
towards design optimization and those geared towards the building of standalone scal-
able metamodels. The first category is by far the most populous. First we have, usually
commercial, integrated systems that model and optimize application specific problems.
Examples are modeFRONTIER [9] for ship hulls and FlightLab [10] for aircraft.

On the other hand there are many general optimization frameworks which can be ap-
plied to different problem domains. The most notable again being Nimrod/O [11]. Nim-
rod/O is based on the Nimrod/G broker [12] and tackles its biggest disadvantage. This
is that Nimrod/G will try to explore the complete design space on a dense grid. This is
usually intractable for realistic problems. Nimrod/O performs a guided search through
the design space trying to find that combination of parameters that will minimize (max-
imize) the model output. To this end Nimrod/O employs a number of search algorithms



(e.g.: P-BFGS, Simplex, Simulated Annealing). A similar project is DAKOTA [13]
from Sandia Laboratories. It is a C++ toolkit that allows a user to choose different op-
timization algorithms to guide the search for optimal parameter settings. Other projects
include GEODISE [14], The Surrogate Management Framework (SMF), SciRun and
its precursor Uintah, NetSolve, NEOS and the work by Y. S. Ong et al [15,16].

While all projects mentioned above are tailored towards optimization, they are not
concerned with creating a metamodel that can be used on its own. Research efforts
that do build replacement metamodels exist [17,18,3,4] but fail to include concepts of
distributed computing. Thus the repetitive process of evaluating the objective function
while constructing the metamodel is done in a sequential fashion, and this can be ex-
tremely time consuming. We were unable to find evidence of other real projects that
tackle this. Perhaps the project that comes closest to what we wish to achieve is de-
scribed in [19], though it too is biased towards optimization.

4 The Design

In this section we outline the architecture of the framework we have designed. A high
level design diagram is shown in figure 1. The workflow is as follows: Given an appli-
cation specific simulator (i.e. the objective function) and a number of model (or algo-
rithm) specific tuning parameters the modeler will build a metamodel with the required
accuracy level. In order to do so it interacts with the simulator through the Application
Aware Scheduler (AAS) which executes the simulator on the grid through an existing
grid middleware or broker.

Fig. 1. High level components



4.1 The Modeler

The first component of the framework is the modeler. This component interacts with
the simulator in order to construct a meta representation of the original objective func-
tion. Our modeler of choice is the Matlab M3 toolbox [6] and its schematic flowchart is
shown in figure 2. The box on the left represents the simulation backend, the component
responsible for evaluating the samples. This is the part that will be distributed. The cen-
ter box depicts the core loop of the toolbox, it performs the adaptive modeling and the
selection of new samples. The rightmost box shows the modeler itself. It is responsible
for building the polynomial/rational/Neural Network/... metamodels.

The main modeling loop goes as follows: First, an initial sample distribution in
the input space is chosen, and simulations are run for all points in this initial sample
set. Then, several models of different complexity are built based on the locations of
the sample points and the corresponding outputs of the simulator. The models are then
compared over a grid, and ranked according to their estimated accuracy. The best mod-
els are kept, and a new set of sample locations is adaptively chosen (sequential design).
The new sample set is passed on to the simulation backend, which will call the simula-
tor for each of the new sample points. After that, the whole loop repeats itself and will
continue until the toolbox has reached the desired accuracy.

For a more detailed treatment of how the modeler works (sample selection, termi-
nation criteria, etc) please refer to [5].

Fig. 2. The Multivariate MetaModeling toolbox (M3)



4.2 The Grid Middleware

In order to distribute the simulation backend across heterogenous resources an extra
software layer is needed. For this APST [20,21] is used (though other middlewares
such as ProActive, CoBRA, Nimrod/G and Gridbus will be supported in the future).
APST can use remote machines accessed through either a Globus GRAM or ssh, remote
storage accessed through a Globus GASS server, scp, ftp, sftp, or an SRB server, and
queuing systems controlled by Condor, DQS, LoadLeveler, LSF, PBS, or SGE. Since
APST grew from AppleS (APPlication LEvel Scheduling) [22] it also tries to schedule
jobs optimally based on the characteristics of the resources used. To do this it makes
use of established grid information services such as Ganglia, MDS and NWS.

APST consists of an APST client (apst) and an APST daemon (apstd), both
which may be running on separate machines. The client may connect to the server
and submit jobs or query the server for job status information. To submit jobs or add
resources to the resource pool the client generates an XML file which is then sent to the
server.

4.3 Application Aware Scheduler

The Application Aware Scheduler (AAS) is the glue between the modeler and the mid-
dleware. It is responsible for translating modeler requests (i.e. evaluations of datapoints)
into middleware specific jobs, in this case APST <task> tags, polling for results, and
returning them to the modeler. The current implementation of the AAS provides a sim-
ple Java implemented bridge for mapping between the M3 toolbox and apstd. This
already makes it possible to apply our framework to complex realistic modeling prob-
lems that were too cumbersome to perform in the sequential case.

As research continues the intelligence of the AAS will be constantly improved. In-
stead of the simple bridge it is now we will include application specific and resource
specific knowledge into the scheduling decision. Rather than requesting a batch of sam-
ples to be evaluated with equal priority the modeler assigns scores to each data sample
(ie. data samples corresponding to interesting features of the objective function, such as
minima and maxima, will receive higher scores). The AAS can then take these priori-
ties into account when making scheduling decisions. Likewise, the AAS should make
use of resource information in order to achieve an optimal task − host mapping (ie.
complex tasks should be scheduled on the fastest nodes).

5 Performance Comparison

5.1 Experimental Setup

In this section serves to illustrate the application of our prototype framework to an ex-
ample from Electromagnetics (EM). We will model the the problem twice, once sequen-
tially and once in parallel, and compare the performance. The simulator, for which we
shall build a parametrized, scalable metamodel, computes the scattering parameters for
a step discontinuity in a rectangular waveguide. The inputs consists of input frequency,
the gap height and the gap length. The (complex) outputs are the scattering parameters



of this 2-port system. Figure 3 shows an approximate plot of the input-output relation
at three different discrete frequencies.
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Fig. 3. A Plot of |S11|, the Modulus of the First Scattering Parameter

While a real world example, this simulator is still relatively cheap to evaluate. One
evaluation takes in the order of 8-13 seconds. Once we are satisfied with the plumbing
of the underlying framework we will turn to heavier problems with evaluation times in
the order of minutes to hours.

Due to the characteristics of the simulator the exact hardware characteristics of the
testbed are of little importance. Nevertheless we list them for completeness. The stan-
dalone case was run on a Pentium IV 1.9GHz with 768MB main memory. For the dis-
tributed case we used 6 hosts accessible through the local LAN. These included: four
Pentium IV 2.4 GHz, one AMD Opteron 1.7 GHz, and one Pentium M 1.6GHz, each
with 512MB RAM. While we regret not having been able to use ’real’ grid resources
we note that this is not really an issue since (1) we are currently only interested in a
proof-of-concept (2) we expect the speedup (distributed vs sequential) to increase lin-
early with the amount of hosts, thus adding more hosts will simply increase the speedup
factor.

The M3 toolbox and apstd ran on the same host and the APST scheduling al-
gorithm was the default simple work-queue strategy. No grid information service was
configured.

For each case the M3 toolbox was used to build a metamodel for the objective
function described above. We recorded the total time needed to build the model, the time
needed to evaluate each batch of samples that is requested as the modeling progresses,
and the total number of function evaluations. The results were averaged over three runs.



5.2 Test Results

Figure 5 summaries the different results for each of the runs. If we first look at the
average time to process one sample batch we find it is about 56 seconds in the sequential
vs 14 in the distributed case. Thus we have an effective speedup factor of about 4. The
size of each batch varies between about 3 to 6 samples (due to the non-deterministic
nature of the modeler), with the first batch always by far the largest (27).

We notice something similar if we look at the total execution times for each run
in figure 4. The total time in the distributed case is about 4 times smaller than in the
sequential case for a comparable number of function evaluations.

Fig. 4. Comparison Sequential and Distributed

Run # Samples Avg Time per Sample Batch (s) Total Runtime (s)
1 217 56.39 2199.21
2 221 55.75 2229.86
3 206 56.29 2082.66

Avg 214.67 56.14 2170.58
Sequential

1 212 14.91 583.55
2 206 13.56 517.12
3 227 13.82 582.45

Avg 215 14.1 561.05
Distributed

Fig. 5. Test Results: Sequential (top) and Distributed (bottom)



The figure 4 seems illogical since 6 hosts were used in the distribution. One would
expect a value of 6 (or in general N if N hosts were used). The reason is that the M3

toolbox is not yet resource aware (see section 4.3) which results in an underutiliza-
tion of the available compute nodes. With this improvement, together with the move to
proper distributed setups involving Globus and SGE administered resources, we expect
to improve the speedup significantly in the very near future. Nevertheless these figures
still stand since their purpose was to illustrate the integration of distributed computing,
adaptive metamodelling and sequential design.

6 Evaluation & Future Work

In this paper we have made the case for the use of gridcomputing techniques while
building scalable metamodels. We have presented a prototype framework based on the
M3 toolbox and APST and contrasted its performance with the traditional approach of
analyzing datapoints sequentially. The initial results look very promising and warrant
further extension of our framework in the future.

Future work will include:

– Move to real distributed setups involving Globus and SGE administered clusters.
– Creation of a ’real’, pluggable framework where the user will be able to easily

choose the modeling algorithm and the grid middleware to suit his or her applica-
tion. In addition, if a required capability is not available the user should be able to
plug in his own extension.

– Apply AI techniques such as genetic algorithms and machine learning algorithms
to enhance the modeling, decrease the reliance on simple heuristics, and allow for
more automated tuning of the modeling process.
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