
JaeV: a Programming and ExeutionEnvironment for Asynhronous IterativeComputations on Volatile NodesJaques M. Bahi, Raphaël Couturier, and Philippe VuilleminLIFC, University of Franhe-Comté, Frane⋆ ⋆ ⋆†{jaques.bahi,raphael.outurier,philippe.vuillemin}�iut-bm.univ-fomte.fr,WWW home page: http://info.iut-bm.univ-fomte.fr/and/Abstrat. In this paper we present JaeV, a multi-threaded Java basedlibrary designed to build asynhronous parallel iterative appliations(with diret ommuniations between omputation nodes) and exeutethem in a volatile environment. We desribe the omponents of the sys-tem and evaluate the performane of JaeV with the implementation andexeution of an iterative appliation with volatile nodes.Key words: Asynhronous iterative algorithms, omputational siene prob-lems, desktop grid omputing, volatile nodes.1 IntrodutionNowadays, PCs and workstations are beoming inreasingly powerful and om-muniation networks are more and more stable and e�ient. This leads sientiststo ompute large sienti� problems on virtual parallel mahines (a set of net-worked omputers to simulate a superomputer) rather than on expensive super-omputers. However, as the node ount inreases, the reliability of the parallelsystem dereases. As a onsequene, failures in the omputing framework makeit more di�ult to omplete long-running jobs. Thus, several environments havebeen proposed to ompute sienti� appliations on volatile nodes using ylestealing onepts. In this paper, we onsider as volatile node any volunteer per-sonal omputer onneted to a network (WAN or LAN1) that an be used asa omputational resoure during its idle times. The aim of this work is to runsienti� omputations in suh a volatile framework.In this paper, we are interested in iterative algorithms. Those algorithms areusually employed for sparse systems (like some linear systems) or when diretmethods annot be applied to solve sienti� problems (e.g. for polynomial root�nders). In the parallel exeution of iterative algorithms, ommuniations mustbe performed between omputation nodes after eah iteration in order to satisfy
⋆ ⋆ ⋆ Candidate to the Best Student Paper Award

† this work was supported by the �Conseil Régional de Franhe-Comté�1 World Area Network or Loal Area Network

2all the omputing dependenies. For that reason, the reliability of the system isa very important feature in suh a ontext and an beome a limiting fator forsalability. Hene, it is neessary to study this reliability aording to the di�er-ent lasses of parallelism. We onsider three onepts (or lasses) of parallelismwith di�erent harateristis.1. Grid omputing environments enable the sharing and aggregation of a widevariety of geographially distributed omputational resoures (suh as su-peromputers, omputing lusters...). In suh arhitetures, ommuniationsare very fast and e�ient and the topology of the system is quite stable.2. Desktop grid omputing environments (also alled Global Computing) ex-ploit unused resoures in the Intranet environments and aross the Internet(e.g. the SETI�home projet [2℄). In this lass of parallelism, the arhi-teture is fully entralized (lient-server-based ommuniations), tasks areindependent and the topology of the system is ompletely dynami (nodesappear and disappear during the omputation).3. Peer-To-Peer (P2P) environments are networks in whih eah workstationhas equivalent apabilities and responsibilities. The arhiteture is om-pletely deentralized (peers diretly ommuniate between eah other) andthe topology of the system is ompletely dynami.As reliability is generally ensured in a Grid omputing ontext, we do notonsider this lass; furthermore, several frameworks are already available to im-plement and run parallel iterative appliations in suh environments. ConerningDesktop grid, although this lass an provide muh more resoures than the �rstone, it is generally not diretly suitable for parallel iterative omputations aslong as ommuniation is restrited to the master-slave model of parallelism.For that reason we would like to gather funtionalities and harateristisof the latter two ases: 1) a entralized arhiteture to manage all the nodes ofthe system akin to a Desktop grid environment with volatile nodes and 2) diretommuniations between omputation nodes like in P2P environments. The pur-pose of this paper is to desribe a programming environment allowing users toimplement and run parallel asynhronous iterative algorithms on volatile nodes.Asynhronous algorithms an be used in a signi�ant set of appliations. Indeed,sienti� appliations are often desribed by systems of di�erential equationswhih lead, after disretization, to linear systems Ax = b where A is a M-matrix(i.e. Aii > 0 and Aij ≤ 0 and A is nonsingular with A−1 ≥ 0). A onvergentweak regular splitting an be derived from any M-matrix and any iterative al-gorithm based on this multiplitting onverges asynhronousely (see [1, 4, 10℄ andthe referenes therein).As idle times and synhronizations are suppressed in the asynhronous it-eration model (i.e. a omputing node an ontinue to exeute its task withoutwaiting for its neighbor results), we do believe this solution is the most suitablein an environment with volatile nodes. Furthermore, omputations formulated inparallel asynhronous iterative algorithms are muh less sensitive to heterogene-ity of ommuniation and omputational power than onventional synhronousparallel iterative algorithms.

3We do not onsider the synhronous iteration model beause it is neitheronvenient for this volatile framework, nor for the heterogeneity and salability.In this paper, we desribe JaeV, a multi-threaded Java based library de-signed to build asynhronous parallel iterative appliations (with diret om-muniations between omputation nodes) and exeute them in a desktop gridenvironment with volatile nodes. To the best of our knowledge, this work is the�rst one presenting a volatile exeution environment with diret ommuniationsbetween omputing nodes and allowing the development of atual sienti� ap-pliations with interdependent tasks.The following setion presents a survey of desktop grid and volatility tolerantenvironments. Setion 3 presents the arhiteture of JaeV and an overview ofall its omponents. Setion 4 desribes the sienti� appliation implementedwith JaeV (the Poisson problem) in order to perform experiments. Setion 5evaluates the performane of JaeV by exeuting the appliation in di�erentontexts with volatile nodes. In setion 6, we onlude and some perspetivesare given.2 Related workCyle stealing in a LAN environment has already been studied in the Condor [9℄and Atlas [3℄ projets. However, the ontext of LAN and the Internet are dras-tially di�erent. In partiular, sheduling tehniques [7, 8℄ need to be adaptedfor a Global Computing environment due to: 1) the very di�erent ommunia-tion and omputing performane of the targeted hosts, 2) the sporadi Internetonnetion and 3) the high frequeny of faulty mahines.MPICH-V and MPICH-V2 [11, 13℄ (message passing APIs2 for automatiVolatility tolerant MPI environment) have been proposed for volatile nodes.However, MPI is not a multi-threaded environment. As a onsequene, it isnot suitable for asynhronous iterations in whih it is onvenient to separateommuniations and omputation.XtremWeb [16℄ is a Desktop Grid and Global Computing middleware whihallows users to build their own parallel appliations and uses yle stealing.However, this environment does not provide diret ommuniations between thedi�erent omputing nodes of the system. As a onsequene, it is not suitable forimplementing and running parallel iterative appliations.Nin�et [6℄ is a Java-based global omputing system. It is designed to overomethe limitations of Ninf [5℄ that urrently laks seurity features as well as taskmigration. The goal of Nin�et is to beome a new generation of onurrentobjet-oriented system whih harnesses abundant idle omputing powers, andalso integrates global as well as loal network parallel omputing. Unfortunately,as with the XtremWeb environment, Nin�et only applies Master-Worker patternand does not provide diret ommuniations between omputation nodes.In [15℄, no environment is proposed but the authors de�ne the requirementsfor an e�etive exeution of iterative omputations requiring ommuniation on2 Appliation Programming Interfaes

4a desktop grid ontext. They propose a ombination of a P2P ommuniationmodel, an algorithmi approah (asynhronous iterations) and a programmingmodel. Finally, they give some very preliminary results from appliation of theextended desktop grid for omputation of Google pagerank and solution of asmall linear system.Jae [14℄ is a multi-threaded Java based library designed to build asyn-hronous iterative algorithms and exeute them in a Grid environment. In Jae,ommuniations are diretly performed between omputation nodes (in a syn-hronous or an asynhronous way) using the message passing paradigm imple-mented with Java RMI3. However, this environment is not designed to run ap-pliations on volatile nodes.3 The JaeV system3.1 The goal of JaeVAs desribed in the previous setion, Jae is fully suitable for running paralleliterative appliations (in a synhronous or asynhronous mode) in a Grid om-puting ontext where nodes do not disappear during omputations. Then, it wasessential to ompletely redesign the Jae environment in order to make it toler-ant to volatility. To do this, it is neessary to develop a strategy to periodiallysave the results omputed by eah node during the exeution in order to restartomputations from a onsistent global state [12℄ when faults our.We propose JaeV, the volatility tolerant implementation of Jae (JaeV forJae Volatile). JaeV allows users to implement iterative appliations and runthem over several volatile nodes using the asynhronous iteration model anddiret ommuniations between proessors.Hene, when a omputer is not used during a de�ned �nite time, it shouldautomatially ontribute to ompute data of a parallel iterative appliation al-ready running (or to be started) on the system. A ontrario, when a user needsto work on this workstation, the resoure must instantaneously be freed and thisnode must automatially be removed from the system. In this way, a volatilitytolerant system must both tolerate appearane and disappearane of omputa-tion nodes without disturbing the �nal results of the appliations running on it.In fat, JaeV tolerates N simultaneous faults (N being the number of ompu-tational resoures involved in an appliation) without disturbing the results atall.3.2 Arhiteture of the systemA JaeV appliation is a set of Task objets running on several omputationnodes. Like in Jae, the di�erent Task objets of an appliation ooperate byexhanging messages and data to solve a single problem. The JaeV arhiteture3 Remote Method Invoation

5onsists of three entities whih are JVMs 4 ommuniating with eah others:1) the Daemons, 2) the Spawner and 3) the Dispather. Sine JaeV is basedon Jae, all the ommuniations performed between the di�erent entities of thesystem are based on Java RMI and threads are used to overlap ommuniationsby omputations during eah iteration.The user of the JaeV system ould play two types of roles, one being theresoure provider (during idle times of his omputer) and the other being appli-ation programmer (the user who wants to run his own spei� parallel iterativeappliation on several volatile nodes). The resoure provider will have a Dae-mon running on his host. The Daemon is the entity responsible for exeuting aTask and we onsider it is busy and not available when a Task is exeuted on it(thereafter, we use the term Daemon and node indi�erently). On the other side,the appliation programmer implements an appliation (using the Java languageand the JaeV API) and atually runs it using the Spawner: this entity atuallystarts the appliation on several available Daemons.Finally, the Dispather is the omponent in harge of 1) registering all theDaemons onneted to the system and managing them (i.e. detet the eventualdisonnetions and replae the nodes) 2) distributing the Task objets of anappliation over the di�erent available nodes, 3) deteting the global onvergeneof a running appliation, and 4) storing the bakups of all the Tasks beingexeuted.Three-tier arhitetures are ommonly used in fault tolerant platforms, like inNin�et, XtremWeb, et. However, JaeV has the advantage to enable both diretommuniations between omputing nodes and multi-threaded programming,whih is impossible with other existing environments. Furthermore, JaeV isthe only one to impliitly provide an asynhronous iteration model by usingprimitives of its API. Therefore, JaeV is an original arhiteture.3.3 The DispatherThe Dispather is the �rst entity to be launhed for the environment. We onsiderit is running on a powerful and stable server. Therefore, all the data stored inthis entity are onsidered as persistent. The Dispather is omposed of threemain omponents, 1) the JaeVDispathServer, 2) the GlobalRegister and 3) theAppliationManager.The JaeVDispather is the RMI server that ontains all the methods re-motely invoked by the Daemons and the Spawner. It is launhed when the Dis-pather starts and is ontinuously waiting for remote invoations.The GlobalRegister registers all the Daemons onneted to the JaeV systemand also stores their urrent state (the 'alive' and the 'busy' states, this will bedesribed in setion 3.4).Finally the AppliationManager indexes all the RunningAppliation objetsof the system. A RunningAppliation is a JaeV objet that models an applia-tion being urrently exeuted on the system: it ontains for example attributes4 Java Virtual Mahines

6suh as the URL where are available the orresponding lass �les of the appli-ation, the number of Tasks, the optional arguments, et.Eah RunningAppliation ontains a single Register objet, whih is a sub-set of the GlobalRegister. During the exeution, the Register is automatiallyupdated in ase of fault (due to a rash or a user disonnetion) of one of theomputation node (it models the whole on�guration at time t of the nodesrunning a given appliation and the mapping of the Tasks over the Daemons).The Dispather is also in harge of storing the Task objets saved (alledBakups) during the omputation in order to restart the appliation from aonsistent global state in ase of fault. A list stored in the RunningAppliationobjet (the BakupList) indexes eah Task omposing an appliation. Hene,when a faulty node is replaed, the last Bakup of the Task it was omputingis sent to the new Daemon in order to restart omputations. As iterations aredesynhronized in the asynhronous model, the other nodes keep omputingwithout stopping.Finally, the RunningAppliation objet is responsible for deteting the globalonvergene and halting the appliation when onvergene is reahed. To do this,eah RunningAppliation objet manages an array ontaining the loal states ofthe nodes involved in the omputation. This array is a�eted eah time a loalonvergene message is reeived from the Daemons. When a node is in a loalstable state (i.e. the relative error between the last two iterations on this nodeis greater than a given threshold) after a given number of iterations, it sends1 to the Dispather, or else, it sends 0. The global state is omputed on theDispather by testing all the ells of the array, if they are all in stable state thenthe onvergene is deteted and the Daemons an stop omputing.To summarize the arhiteture of the Dispather, Figure 1 desribes themain objets with the GlobalRegister on the left, the JaeVDispather (the RMIserver) on the right and the AppliationManager in the enter.
ApplicationManager

Dispatcher

Register
Global

Server
RMI

RunningApplication 2

RunningApplication 1

Reg1

BackupList1

ConvTab1

nbTasks = 4

Reg2

BackupList2

ConvTab2

nbTasks = 3

N1

T3 T4T2

T3T2T1

N2
N3
N4

N5
N6
N7
N8
N9

N1 N3 N4 N6

N2 N5 N7

0 0 1 0

0 1 1

T1

Fig. 1. Desription of the Dispather elements.In this example, nine Daemons are urrently registered to the Dispather(nodes N1 up to N9 in the GlobalRegister). Only seven nodes are atually busy(i.e. omputing an appliation). They appear in grey in the GlobalRegister (inthe �gure, we represent the nodes in di�erent grey levels in order to di�erentiate

7the appliation being exeuted on the orresponding Daemon). In the Applia-tionManager, we an see that two appliations are urrently running, the �rstone (RunningAppliation1) is distributed over four nodes (whih are the nodesN1, N3, N4 and N6 in the orresponding Register alled Reg1) and the seondone (RunningAppliation2) over three nodes (whih are the nodes N2, N5 andN7 in the orresponding Register alled Reg2). This �gure also shows the Bak-ups stored on the Dispather for eah appliation being exeuted (BakupList1for the �rst appliation and BakupList2 for the seond one). Every BakupListontains a single Bakup objet for eah Task running on a Daemon. The lastelements appearing in the �gure are the onvergene arrays (ConvTab1 for the�rst appliation and ConvTab2 for the seond one): with the values of Con-vTab1, we an dedue that only Task T3 (exeuted on node N4) is in a loalonvergene state for the �rst appliation. Conerning the seond appliation,we an see that Tasks T2 and T3 (respetively running on nodes N5 and N7)have loally onverged to the solution.3.4 The DaemonWhen the Daemon is started, an RMI server is launhed on it and is ontinuouslywaiting for remote invoations. Then, the Daemon 1) ontats the Dispatherin order to obtain its remote RMI referene 2) remotely registers itself on theGlobalRegister of the Dispather (where this Daemon is then labeled as availablebeause it has not been attributed an appliation yet), and 3) starts loally theheartbeatThread : this thread periodially invokes the beating remote method onthe Dispather RMI server to signal its ativity. The Dispather ontinuouslymonitors these alls to implement a timeout protool: when a Daemon has notalled for a su�ient long time, it is onsidered down in the GlobalRegister (i.e.it is labeled as notAlive). In ase this node was exeuting an appliation, theTask initially running on it should be resheduled to a new available Daemonby reloading the last Bakup stored on the Dispather for the faulty node.One all those features are performed, the Daemon is initialized and ready tobe invoked by the Spawner in order to atually run omputation Tasks. The mainobjets omposing the Daemon are mostly the same as in the Jae environment(interested readers an see [14℄ to have more details about the omponents ofthe Jae Daemon and their interation). However, several objets have beendeeply modi�ed or added to the JaeV environment in order to ensure volatilitytolerane. Those omponents are desribed in the following.The Daemon ontains the Register of the appliation it is running and thisRegister is automatially updated by the Dispather when faults our duringthe exeution. As the Register also ontains the omplete list of the nodes run-ning a given appliation and the mapping of the Tasks over them, the Daemon isalways aware of the topology of the system. This ensures diret ommuniationsare arried out between nodes beause the Register ontains the remote refer-ene RMI for eah Daemon. As a onsequene, a given node an invoke remotemethods on every Daemon running the same appliation. Furthermore, when a

8node reeives a new Register, the reipient of all the Message objets to be sentis automatially updated (if it has hanged).Conerning the Messages to send to other Daemons, as the asynhronismmodel is message loss tolerant, the Message is simply lost if the destination nodeis not reahable.3.5 The SpawnerThe Spawner is the entity that atually starts a user appliation. For this reason,when launhing the Spawner, it is neessary to give some parameters to de�nethis appliation: 1) the number of nodes required for the parallel exeution, 2)the URL where the lass �les are available and �nally 3) the optional argumentsof the spei� appliation.Then, the Spawner sends this information to the Dispather that reates anew RunningAppliation with the given parameters and a new Register om-posed of the required number of available nodes appearing in the GlobalRegister(whih are then labeled as notAvailable). This Register is then attributed to theRunningAppliation and sent to the Spawner.Finally, when the Spawner reeives the Register objet, it broadasts it tothe whole nodes of the topology and then atually starts the omputation oneah of the Daemons.The whole interation between the JaeV entities is desribed in Figure 2. Inthis example, we an see the Daemon N1 (�g.2(a)) and then a set of Daemons(N2, N3 and N4, �g.2(b)) registering themselves to the Dispather. Those Dae-mons are then added to the GlobalRegister (Reg) and are labeled as availablebeause no appliation has been spawned on the system yet.In �g.2(), the Spawner S1 launhes appliation appli1 whih requires twonodes. The Dispather reates then a RunningAppliation objet for this appli-ation and attributes it a Register objet (Reg1) ontaining two available nodesof the GlobalRegister (N1 and N2 whih are then labeled as notAvailable andappear in grey level in the GlobalRegister). The Register is sent to N1 andN2 (in order to permit diret ommuniations between the two nodes) and theappliation is atually run by the Spawner on those two Daemons.In �g.2(d), the Daemon N2 rashes (or is disonneted by its user). However,as the asynhronous iteration model is used in JaeV, N1 keeps omputing anddoes not stop its job (the eventual messages to send to the Task running on N2will be lost until the node is replaed). The Dispather detets this disonnetionand labels N2 as notAlive in the GlobalRegister. Reg1 is then updated in theRunningAppliation objet (N2 is replaed by N3 whih is available) and thisnew Register is sent to the orresponding Daemons (N1 and N3, the new one).Sine then, N1 is aware of the new topology of the system and updates the listof its neighbors (i.e it will no longer try to send messages to N2 but will diretlysend them to N3). Finally, the Dispather sends the appropriate Bakup to thenew node of the topology and omputations an restart on this Daemon.After several minutes, the Daemon is launhed again on node N2 (�g.2(e)).It is then labeled as alive and available in the GlobalRegister.

9

comm.

comm.

comm.

comm.

Reg

Dispatcher

Appli1

N1

N2

N3

N4

N1 N2Reg1

N1 N2Reg1

N1 N2Reg1

N1

N2

N3

N4

comm.

S1

Dispatcher

Appli1

N1

N2

N3

N4

N1 N3Reg1

N2 N4Reg2

Appli2

N1 N3Reg1

N2 N4Reg2

N1 N3Reg1

N2 N4Reg2

Reg

N4

N3

N2

N1

S2

Dispatcher

workerRegister()

Reg

N1

N3

N4

N2

N1

N2

N3

N4

Reg

Dispatcher

N1

N1

Dispatcher

Appli1 N1 N3Reg1

N1 N3Reg1

N1 N3Reg1

workerRegister()

Reg

N1

N2

N3

N4

N4

N3

N2

N1

(java jaceV.JaceV
Spawner 1

−Spawner 2 appli1)
(java jaceV.JaceV
Spawner 2

−Spawner 2 appli2)

update()

update()

workerRegister()

workerRegister()

update()

update()
Reg

Dispatcher

Appli1

N1

N2

N3

N4

N1 N3Reg1

N1 N3Reg1

N1 N3Reg1

N3

N2

N1

(a) A Daemon (node N1) registers itself

(c) The application ’appli1’ is spawned for

(e) Node N2 registers itself again to the Dispatcher

(f) The application ’appli2’ is spawned for two nodes

update()

update()

N4

CRASH !

(b) Three Daemons (nodes N2 up to N4)

backup()

Daemon

Daemon

Daemon

Daemon

workerRegister()

(d) Node N3 replaces N2 that crashed for ’appli1’

two nodes

register themselves to the Dispatcher

to the Dispatcher

Fig. 2. The registering and spawning proesses in JaeV.Finally, in �g.2(f), the Spawner S2 launhes appliation appli2 that requirestwo nodes. The Dispather reates the RunningAppliation objet for this appli-ation, attributes it a new Register (Reg2) whih ontains the last two availablenodes of the GlobalRegister (N2 and N4) and sends them Reg2 in order toenable diret ommuniation between these Daemons. At the end, S2 atuallystarts omputations on N2 and N4.4 Problem desriptionIn this setion, we desribe the problem used for the experiments with JaeV. Itonsists of the Poisson equation disretized in two dimensions. This is a ommonproblem in physis that models for instane heat problems. This linear ellipti

10partial di�erential equations system is de�ned as
−∆u = f. (1)This equation is disretized using a �nite di�erene sheme on a square domainusing a uniform Cartesian grid onsisting of grid points (xi, yi) where xi = i∆xand yj = j∆y. Let ui,j represent an approximation to u(xi, yi). In order to dis-retize (1) we replae the x− and y−derivatives with entered �nite di�erenes,whih gives

ui−1,j − 2ui,j + ui+1,j

(∆x)2
+

ui,j−1 − 2ui,j + ui,j+1

(∆y)2
= −fi,j (2)Assuming that ∆x = ∆y = h are disretized using the same disretizationstep h, (2) an be rewritten in

−4 ∗ ui,j + ui−1,j + ui+1,j + ui,j−1 + ui,j+1

h2
= −fi,j. (3)For this problem we have used Dirihlet boundary onditions.So, (1) is solved by �nding the solution of the following linear system of thetype A × x = b where A is a 5-diagonal matrix and b represents the funtion f .To solve this linear system we use a blok-Jaobi method that allows us todeompose the matrix into blok matries and solve eah blok using an iterativemethod. In our experiments, we have hosen the sparse Conjugate Gradientalgorithm. Besides, this method allows to use overlapping tehniques that maydramatially redue the number of iterations required to reah the onvergeneby letting some omponents to be omputed by two proessors.From a pratial point of view, if we onsider a disretization grid of size

n × n, A is a matrix of size (n2, n2).It should be notied that, in the following, the number of omponents byproessor is important and is a multiple of n, the number of omponents of adisretized line, and that the overlapped omponents is less important than thisnumber of omponents. The solution of this problem using parallelism involvesthat eah proessor exhanges, at eah Jaobi iteration, its �rst n omponentswith its predeessor neighbor node and its last n ones with its suessor neighbornode. The number of omponents exhanged with eah neighbor is equal to n. Infat, we have only studied the ase where the totality of overlapped omponentsare not used by a neighbor proessor, only the �rst or last n omponents areused beause the other ase entails more data exhanged without dereasing thenumber of iterations. So, whatever the size of the overlapped omponents, theexhanged data are onstant.Moreover we reall that the blok-Jaobi method has the advantage to besolvable using the asynhronous iteration model if the spetral radius of theabsolute value of the iteration matrix is less than 1, whih is the ase for thisproblem.Finally, the Poisson problem implemented using the JaeV API has the skele-ton desribed in Algorithm 1:

11Algorithm 1 The Poisson problem skeleton using the JaeV APIBuild the loal Poisson submatrixInitialize dependeniesrepeatSolve loal Blok-Jaobi subsystemAsynhronous exhange of nonloal data //with jaeSend() and jaeReeive()jaeLobalConvergene() //Loal onvergene detetionjaeSave() //Primitive used to save the Task objet on the DispatherjaeIteration++ //Inrement the iteration number of the Bakup to storeuntil jaeGlobalConvergene()5 ExperimentsFor our experiments, we study the exeution times of the appliation over 16nodes aording to n (with n varying from 500 up to 1800, whih respetivelyorresponds to matries of size 250,000×250,000 up to 3,240,000×3,240,000 be-ause the problem size is n2). An optimal overlapping value is used for eah
n. These experiments are performed with di�erent on�gurations of proessorsand networks. For eah on�guration, we �rst run the appliation over 16 stablenodes, and then, for the exeution in a volatile ontext, we launh 19 Daemonsand run the appliation over 16 of them. In the last ase, our strategy for volatil-ity is to randomly disonnet eah Daemon on average slightly less than twotimes during the whole exeution of the appliation and reonnet it a few se-onds later (i.e. there are approximatively about 30 disonnetions/reonnetionsfor eah exeution).We hoose to perform those series of tests with di�erent on�gurations ofproessors and networks. Aording to proessors, we use both homogeneous andheterogeneous proessors. The �rst ontext onsists of a 19-workstation lusterof Intel(R) Pentium(R) 4 CPU 3.00GHz proessors with 1024MB of RAM. Forthe heterogeneous ase, we use 19 workstations from Intel(R) Pentium(R) IIICPU 1266MHz proessors with 256MB of RAM up to Intel(R) Pentium(R) 4CPU 3.00GHz with 1024MB of RAM. Then, we perform our tests with di�erentnetwork bandwidths.Finally our series of tests are performed using four on�gurations of proes-sors and network, whih are desribed as follows.1. A on�guration with homogeneous proessors and an Ethernet 1Gbps net-work,2. a on�guration with homogeneous proessors and a 10,000Kbps upload anddownload bandwidth,3. a on�guration with homogeneous proessors and a 1,000Kbps upload anddownload bandwidth,4. a on�guration with heterogeneous proessors and an Ethernet 100Mbpsnetwork.

12 For the seond and the third on�gurations, eah workstation of the lusterruns a Qos5 sript in order to limit the network bandwidth to 10,000Kbps (foron�guration 2) and 1,000Kbps (for on�guration 3).Whatever the on�guration used, the Dispather is running on an Intel(R)Pentium(R) 4 CPU 3.00GHz proessor with 1024MB of RAM.The results of the experiments are represented in �gure 3 and eah exeutiontime is the average of a series of ten exeutions.
 0

 500

 1000

 1500

 2000

 2500

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(a) Homogeneous on�guration. 0

 500

 1000

 1500

 2000

 2500

 3000

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(b) 10,000Kbps on�guration.
 0

 500

 1000

 1500

 2000

 2500

 3000

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

() 1,000Kbps on�guration. 0

 500

 1000

 1500

 2000

 2500

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(d) Heterogeneous on�guration.Fig. 3. Exeution times of volatile and non volatile ontexts for the di�erent on�gu-rations.Analyzing the four �gures, we dedue that JaeV supports rather well thevolatile ontext. Indeed, although there are approximatively 30 disonnetionsduring the whole exeution, the ratio volatile context execution time/stable
context execution time is always less than 2.5. Furthermore, at some pointduring the exeution, less than 16 nodes are atually omputing beause morethan 3 nodes are urrently disonneted (they have not reonneted to the systemyet). In this ase, the alive nodes keep omputing and are not waiting for theother Daemons to reonnet as it would our in a synhronous exeution.5 Quality of Servie

13We an also dedue that the lower the network bandwidth is, the greater theratio aording to the problem size is (this is partiularly obvious in �g.3()).This is due to the fault detetion and the restarting of the appliation. Indeed,when the Dispather detets the disonnetion of a node (and eventually replaesit), it broadasts the new Register objet to all the alive nodes involved in theexeution of the appliation. If the bandwidth is low, this ation takes a ertaintime to be performed (beause the size of the Register is not negligible). Hene,some Daemons would ontinue to send messages to the disappeared node duringthis period until the Register is atually updated on the Daemons. Furthermore,when the new Daemon replaes a faulty node, it must ompletely reload theBakup objet from the Dispather. This objet is rather important in terms ofsize, and it an take some time to deliver it on a low bandwidth network and toatually update it on the new Daemon. All those ations make the appliationmuh slower to onverge to the solution.Finally, omparing the exeution times on homogeneous and heterogeneousworkstations (respetively �g.3(a) and �g.3(d)) we an see that the urves arerather similar. As a onsequene, we an dedue that JaeV does not seem tobe that sensitive to the heterogeneity of proessors for this typial appliationand perhaps for other similar oarse grained appliations. This is undoubtedlydue to the asynhronism whih allows the fastest proessors to perform moreiterations.6 Conlusion and Future WorksIn this paper, we desribe JaeV, a multi-threaded Java based library designedto build asynhronous parallel iterative appliations and run them over volatilenodes. A goal of JaeV is to provide an environment with ommuniations be-tween omputation nodes after eah iteration, as it is neessary to run paralleliterative appliations. JaeV uses the asynhronous iteration model in order toavoid synhronizations. Indeed, synhronous iterations would dramatially slowdown the exeution in a volatile ontext where nodes appear and disappearduring omputation.The performane of the Poisson problem resolution show that JaeV is fullysuitable for running asynhronous iterative appliations with volatile nodes. Wealso remark that performanes of JaeV are degraded if the network band-width gets very low. Experiments have been onduted with matries of size250,000×250,000 up to 3,240,000×3,240,000.In future works, we plan to deentralize the arhiteture of JaeV in order toavoid bottleneks on the Dispather. Some solutions to arry out those modi�-ations lie in using for example a deentralized onvergene detetion algorithm,or storing Bakups on omputation nodes, and so, to reah a really P2P likeenvironment.

14Referenes1. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerial Meth-ods. Prentie Hall, Englewood Cli�s NJ (1989)2. SETI�home: http://setiathome.ssl.berkeley.edu3. Baldeshwieler, J., Blumofe, R., Brewer, E.: Atlas: An infrastruture for global om-puting. 7th ACM SIGOPS European Workshop on System Support for WorldwideAppliation (1996)4. Bahi, J., Miellou, J. -C., Rho�r, K.: Asynhronous multisplitting methods for non-linear �xed point problems Numerial Algorithms, 15(3, 4) (1997) 315�3455. Sato, M., Nakada, H., Sekiguhi, S., Matsuoka, S., Nagashima, U., Takagi, H.: Nin-�et: A Network based information Library for a global world-wide omputing in-frastruture. HPCN'97 (LNCS-1225) (1997) 491�5026. Takagi, H., Matsuoka, S., Nakada, H., Sekiguhi, S., Sato, M., Nagashima, U.: aMigratable Parallel Objet Framework using Java. In Proeedings of the ACM 1998Workshop on Java for High-Performane Network Computing (1998)7. Aida, K., Nagashima, U., Nakada, H., Matsuoka, S., Takefusa, A.: Performaneevaluation model for job sheduling in a global omputing system. 7th IEEE Inter-national Symp on High Performane Distributed Computing. (1998) 352�3538. Rosenberg A. L.: Guidelines for data-parallel yle-stealing in networks of worksta-tion. Journal of Parallel and Distributed Computing. 59 (1999) 31�539. Basney, J., Levy, M.: Deploying a High Throughput Computing Cluster. Volume 1,Chapter 5, Prentie Hall (1999)10. Frommer, A. and Szyld, D.: On asynhronous iterations Journal of omputationaland applied mathematis. 23 (2000) 201�21611. Bosila, G., Bouteiller, A., Capello, F., Djilali, S., Fedak, G., Germain, C., Herault,T., Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.: MPICH-V:Toward a Salable Fault Tolerant MPI for Volatile Nodes. ACM/IEEE InternationalConferene on SuperComputing, SC 2002, Baltimore, USA (2002)12. Elnozahy, E.N., Alvisi, L., Wang, Y.M., and Johnson, D.B.: A survey of rollbak-reovery protools in message-passing systems. ACM Comput. Surv., 34(3) (2002)375�40813. Bouteiller, A., Capello, Herault, T., Lemarinier, P., Magniette, F.: MPICH-V2:a Fault Tolerant MPI for Volatile Nodes based on Pessimisti Sender Based Mes-sage Logging. ACM/IEEE International Conferene on SuperComputing, SC 2003,Phoenix, USA (2003)14. Bahi, J., Domas, S. and Mazouzi, K.: Combination of java and asynhronism forthe grid: a omparative study based on a parallel power method. 6th InternationalWorkshop on Java for Parallel and Distributed Computing, JAVAPDC workshop ofIPDPS 2004, IEEE omputer soiety press (2004) 158a, 8 pages15. Browne, J. C., Yalamanhi, M., Kane, K., Sankaralingam, K.: General ParallelComputations on Desktop Grid and P2P Systems. 7th Workshop on Languages,Compilers and Runtime Support for Salable Systems. LCR 2004, Houston,Texas(2004)16. Cappello, F., Djilali, S., Fedak, G., Hérault, T., Magniette, F., Néri, V. and Lody-gensky, O.: Computing on large-sale distributed systems: Xtremweb arhiteture,programming models, seurity, tests and onvergene with grid. Future GenerationComp. Syst., 21(3) (2005) 417�437

