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Abstract. The task scheduling problem in heterogeneous system is known as 
NP-hard. Recently, Bajaj and Agrawal proposed an algorithm TANH (Task 
duplication-based scheduling Algorithm for Network of Heterogeneous systems) 
with optimality conditions, which are wider than previous optimality conditions. 
TANH algorithm combines the clustering technique with task duplication. We 
propose two postprocessing algorithms, HPSA1 (Heterogeneous Posterior 
Scheduling Algorithm) and HPSA2, to reduce the schedule length for DAGs 
which don’t satisfy the optimality conditions of TANH algorithm. Our 
algorithms reduce the schedule length by exchanging task clusters in which its 
parent tasks reside. We compare with HCNF (Heterogeneous Critical Node 
First) algorithm by illustrating an example to show how our algorithms operate. 
 
Keywords: Heterogeneous system, DAG, task scheduling, postprocessing, 
clustering.  

                          

1 Introduction 

For high-speed computation purposes, parallel processing has been extensively 
explored. Some applications like fluid flow, image processing, weather modeling, and 
distributed database systems get a great deal of parallelism. A general methodology 
adopted in parallel processing is to partition an application into a set of cohesive tasks 
and to run them separately on different processors. The partitioned application can be 
modeled as a directed acyclic graph (DAG). In DAGs, a forward edge means that the 
predecessor task transmits the data to the successor task.  

The task scheduling problem is to allocate tasks to processors in order to minimize 
the completion time of given application which can be expressed as a DAG. The task 
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scheduling problem is known as NP-hard [1,2]. Therefore, heuristic task scheduling 
algorithms are used to tackle the problem. The scheduling algorithms have been 
extensively studied [3-19]. These heuristics are classified into a variety of categories 
such as, list scheduling algorithms, clustering algorithms, duplication-based 
algorithms and guided random search methods. Most of them are designed for 
homogeneous computing systems.  

In the classical list scheduling algorithms [3,4,5,19], tasks are assigned priorities 
statically or dynamically. The priorities are assigned based on computation and 
communication costs in the task graph. The next chosen is the highest priority task 
among the ready tasks whose precedence have been met and are ready for scheduling. 
The following step is to select most suitable processor to accommodate the chosen 
task. Performances of list scheduling algorithms tend to suffer due to min-max 
problem and deteriorate substantially for fine grain task graphs having high 
communication to computation cost ratio (CCR) [18]. 

Clustering-based algorithms [7,8,9] try to schedule heavily communicating tasks 
onto the same processor. It is also known as three phase scheduling. In the first phase, 
heavily communicating tasks are grouped into a set of clusters (unbounded) using 
linear or nonlinear clustering heuristics. In the second phase, clusters are mapped onto 
the set of available processors using communication sensitive or insensitive heuristics. 
In the third phase cluster merging is done based on the available number of 
processors.  
  Duplication-based algorithms allow tasks to be duplicated on one or more than 
processors, in order to reduce the start time of its successor tasks. Now, the 
duplication-based algorithms have been blended with both list and clustering-based 
techniques by other researchers. List or clustering-based algorithms [5,6,10-13] with 
task duplication tend to perform better than no duplication algorithms. Genetic 
algorithms [14,15] are of the most widely studied guided random search techniques 
for the task scheduling problem. Although they provide good quality of schedules, 
their execution times are significantly higher than other alternatives. 

The processors in heterogeneous systems have different processing powers, so 
scheduling them is more complex. In recent years, many scheduling algorithms for 
the heterogeneous system are proposed, such as Levelized Duplication Based Schedu- 
ling (LDBS) [10], Dynamic Level Scheduling (DLS) [4], Task Duplication-based 
Scheduling Algorithm for Network of Heterogeneous System (TANH) [13], Fast 
Critical Path (FCP) and Fast Load Balancing (FLB) [5]，Task Duplication Scheduling 
(TDS-1) [16], Heterogeneous Earliest Finish Time First (HEFT) [17]. 

In this paper, we propose two posterior algorithms, HPSA1 (Heterogeneous 
Posterior Scheduling Algorithm) and HPSA2 for heterogeneous computing system. 



The main motivation is to improve the quality of the scheduling length, while DAGs 
don’t satisfy TANH algorithm’s optimality conditions. The algorithms run at the hind 
of TANH algorithm. 

In the next section, we define the parameters and data structures served for our 
algorithms. In section 3, we briefly introduce TANH and HCNF algorithms. In 
section 4, we propose our two algorithms. In section 5, we illustrate an example to 
show that our algorithms how to work. In section 6, we discuss the experimental 
results. In final part, we present conclusions.

2 Problem Definition 

We consider any application that is represented as a directed acyclic graph (DAG). In 
DAG, each node represents a task and each directed edge represents communication 
cost between tasks. A task is assumed to be nonpreemptive. A tuple G = (V, E, P, w, c) 
is used to define a DAG, where V is a set of nodes,  |V| is the number of nodes in V; 
E is a set of edges; P is a set of processors, |P| is the number of available processors; 
w = w(ni , pi) indicates the computation cost of task ni on processor pi, where ni∈V 
and pi∈P; c = c(ni , nj) indicates the communication cost between task ni and nj, 
where ni, nj ∈V. If both ni and nj are scheduled onto the same processor, c(ni , nj) is 
assumed to be zero. In the other hand, the network bandwidth is assumed to be wide 
enough to provide contention-free transmission. Given a task nj, pred(nj) is a set of 
predecessor tasks which have the outgoing edge into nj; succ(nj) consists of the tasks 
which receives the data from nj. And ni = fpred(nj) denotes the favorite predecessor, 
which means among all the predecessor tasks of nj, ni has the highest value of the 
earliest finish time. The earliest start/finish time indicates when a task could be 
started/finished at the earliest possible time. Arrival time of task nj equals the sum of 
the earliest finish time of the parent tasks which are not in the same processor with nj 
and the communication time between the parent task and nj. 

A set of tasks assigned to a processor is called a cluster. Each task in a cluster has 
its start time and finish time in the corresponding processor. A task nj at processor pk 
has its start time st(nj , pk) and finish time ft(nj , pk). In order to compute st(nj , pk) and 
ft(nj , pk) for task nj at processor pk, we need to introduce several equations: 
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where ft(pk) represents the current finish time of processor k, and rdy(pk ,nj) 
represents the largest ready time from parent tasks allocated in other processors. 

3 Related Works    

In recent past, some algorithms combined clustering technique with  duplication 
have been proposed. The TANH algorithm [13] just belongs to them, its time 
complexity is |V|2. The algorithm firstly generates the initial clusters. If the number of 
required processors (RP) is larger than the number of available processors (AP), then 
using compaction procedure selects two processors and merges them to one processor 
until RP equals AP. Bajaj and Agrawal proposed TANH algorithm and presented a set 
of optimal conditions for join nodes. Unfortunately, when an application DAG doesn’t 
satisfy the optimal conditions, the expected result is difficult to be gained. 

HCNF [19] is list scheduling algorithm, it proceeds by identifying the critical path 
in the DAG. The critical path is a path which has the largest sum of average task 
computation costs and inter-task communication costs among all the paths from the 
entry task to the exit task. Task is free when its predecessor tasks have been assigned 
to processors. A list of free tasks is constructed. Within the list, the highest priorities 
are assigned to tasks which fall in the critical path, followed by those with the highest 
computation cost. A task ni is scheduled onto processor Pi, which gives the lowest 
eft(ni , Pi). Its earliest finish time eft(ni , Pi) = w(ni , Pi)+est(ni , Pi), where the earliest 
start time est(ni , Pi) is the maximum of time at which processor Pi becomes available 
and the time at which the last message arrives from any predecessor of ni, and w(ni , Pi) 
is the execution time of ni on Pi . In order to reduce the communication time, the 
favorite predecessor is considered for duplication. 

4 Proposed Algorithms 

The main motivation of our algorithms is to reduce the finish time of tasks which 
determine the scheduling length by exchanging its parent clusters. If the finish time of 
the task can be reduced, the scheduling length may be reduced. Thus, two posterior 
processes, HPSA1 and HPSA2, are proposed to improve the scheduling length.  

The proposed two algorithms execute at the hind of the general scheduling 
algorithms, as shown in Fig. 1.  

4.1 Selection of Scheduling Algorithm  

In this paper, we select TANH algorithm as the scheduling algorithm instead of HCNF. 



The researchers of TANH algorithm proposed a set of optimal conditions, if DAGs 
satisfied the optimal conditions, TANH algorithm got the optimal schedule, when our 
algorithms executed at the hind of TANH algorithm, the optimal schedule was also 
got, but it was not sure to get optimal schedule when HCNF algorithm was used. If 
DAGs didn’t satisfy the optimal conditions, it was not sure to get optimal schedule 
when TANH was used to schedule, but combining our algorithms to TANH can make 
the schedule length less than or equal to that of TANH, and HCNF also got the unsure 
optimal schedule. So the combination of our algorithms and TANH is used in this 
paper. The comparisons are shown in Table 1. 

 
Main( ) 

{ 

                ... 

                Scheduling algorithm ( ); 

                Posterior scheduling algorithm; 

} 

 Fig. 1. The position of the posterior algorithm.
 

Table 1. The comparisons of TANH, TANH+HPSA, and HCNF 
DAG (directed a-cyclic graph) 

Task scheduling 
algorithm It satisfies the optimal 

conditions of TANH 
It doesn’t satisfy the optimal 

conditions of TANH 
TANH Optimal schedule Not sure 

TANH+HPSA Optimal schedule 
The schedule length<=the 
schedule length by TANH 

HCNF Not sure Not sure 
 

Our algorithms execute at the hind of TANH algorithm, only when exchanging 
operation can make the schedule length reduce, the operation is done, if no 
improvement is gained, the operation will be canceled. So the combination of our 
algorithms and TANH algorithm can reduce the schedule length given by TANH 
algorithm. Otherwise the schedule length is preserved. 

4.2 HPSA1 Algorithm 

The main idea of this algorithm is to reduce the start time of target task at its 
processor, and reduce the scheduling length. Firstly, the exit node is target task, and 
its predecessors are checked, which predecessor determines the start time of the target 



task, and exchange the cluster including the decided task and the other parent tasks’ 
clusters of the target task, respectively. Which exchange made the start time of the 
target reduce most is selected as the right exchange. For the current target, next passes 
are done, until no improvement is gained. Checking the current schedule, the 
predecessor task that determines the start time of the target task is selected as the next 
target task, repeat the above steps, until no improvement is gained. The pseudocode 
for HPSA1 algorithm is described in the Fig. 2. The time complexity of HPSA1 is 

.  
i

i
n V

2 2 max |succ(n )||V| |P|
∈

 
Void HPSA1( ) 

{ 

  nt =the exit task; 

  do{ 

       do{ 

            np = parent task that determines the start time 

of nt; 

nq = ParentTask1(nt ,np);  

            exchange clusters of np and nq; 

          } while (start time of nt reduces); 

        nt = ParentTask2(nt); 

    }while(there is an improvement);      
} 

 
 
 

 

Fig. 2. The psedocode of HPSA1. Function ParentTask1(nt, np) is responsible for finding another
parent task nq of nt that minimizes the start time of nt by exchanging clusters of np and nq each
other. Function ParentTask2(nt,) is responsible for finding the parent task of nt which determines
the start time of nt

4.3 HPSA2 Algorithm 

For ni and nj in some processor pi, an empty slot exits if the finish time of ni in pi is 
smaller than the start time of nj in pi. After a schedule, it is highly probable that the 
empty slots exist. If an empty slot not only has the largest size among all the empty 
slots, but also affects the schedule length, then that is more improvement on the 
scheduling length when we try to exchange the clusters that the predecessors 
accommodate and the cluster above the slot. The biggest reduction cluster that its 
exchange makes the scheduling length reduce most is selected as the right exchange. 
After the operation to the slot which has biggest size, then consider the slot with the 



second biggest size and affecting the scheduling length. 
 
 
Void  HPSA2 ( ) 

{ 

Assign every task as -1; 

do { 

        Find all empty slots; 

        Generate the path; 

        nt= Findtail();  
       for each predecessor np of nt

     np =  FindTask(nt); 

exchange clusters of nt and np  ; 

        Assign nt  as 0; 
     } while (there is an improvement) 

} 

 
 

 
 

 
 

Fig. 3. The psedocode of HPSA2. Function FindTask(nt) is responsible for finding a task which
is neither at the same cluster with nt , nor with the exit task, and  maximum reduction for the
slot is obtained by exchanging this cluster and the cluster that nt resides. Function Findtail() is
responsible for finding the tail task of an empty slot that has the biggest size and affects the
scheduling length 

Each slot has its information: head task, tail task, and slot size. In order to know 
which slot affects the scheduling length, we need to check the tail task whether affects 
the scheduling length. We use a queue path to save tasks that determine the 
scheduling length from the exit task, and write down the slot size related to the tasks.      
If a task in path has only one predecessor, then also adds this predecessor task to the 
path, and the slot size is zero.  

The psedocode of HPSA2 is illustrated in the Fig. 3. It marks all the tasks. If the 
slot related with this task was operated, this task is unmarked. Next, it memories the 
current scheduling length, which can be used to compare the scheduling length after 
exchanging the clusters that make the slot reduce most. The time complexity of 
HPSA2 is |V|2|P|2. 

5 Illustration of an Example 

In this part, we illustrate an example to show combining our two posterior processes 



to TANH is efficient for improving the schedule of TANH algorithm, and their 
performances are better than HCNF algorithm. The example DAG is illustrated in the 
Fig. 4a, and the computation cost of tasks at every processor is illustrated in the Fig. 
4b. We get the initial schedule as the Fig. 5 after TANH algorithm. We get the 
schedule as the Fig. 6 after the HCNF algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tasks P1 P2 P3 P4

1 5 6 9 7 
2 7 7 9 8 
3 11 7 9 9 
4 8 7 10 13 
5 10 3 6 9 
6 7 10 4 12 
7 11 9 8 12 
8 10 11 7 6 
9 6 4 9 3 

 (a) (b)
 

Fig. 4.  (a) An example DAG G1. (b) Runtime of tasks for G1. 
 

5.1 Using HPSA1 to Post-process 

In the Fig. 5, firstly, the target is task 9, task 7 determines the start time of task 9. By 
exchanging cluster {1, 4, 7} and cluster {1, 3, 6}, {1, 4, 7} and {1, 4, 8}, {1, 4, 7} and 
{1, 2, 5}, we know that the exchange of cluster {1, 4, 7} and cluster {1, 3, 6} makes 
the start time of task 9 reduce most. We get a schedule of Fig. 7. When the start time 
of task 9 was reduced, next passes will be done, but no improvement is gained. For 
the current schedule, task 6 and task 7 are considered for exchanging, because they 
determine the start time of the task 9. However, neither of them as the target improves 
the schedule length. 
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5.2 Using HPSA2 to Post-process 

Firstly, a path is created, in which contain the tasks determine the scheduling length of 
the schedule in Fig. 5. We illustrate tasks in the path 9-7-3-1 in accordance with the 
size of slots which related to them in Table 2. From the table, the empty slot related to 
task 9 has the biggest size and affects the schedule length. Exchanges are executed, 
cluster {1, 3, 6} and cluster {1, 4, 7}, {1, 3, 6} and {1, 4, 8}, {1, 3, 6} and {1, 2, 5}, 
exchanging {1, 3, 6} and {1, 4, 7} has most reduction for the slot above task 9, the 
schedule as the Fig. 7. Next, only one slot for task 7, we operate an exchange: {1, 
4} {1, 3}, but no improvement is gained, HPSA2 ends. 

 
Table 2. The Path of affecting the scheduling length of S1. 

 
task 9 7 3 1 

Size of slot 9 2 0 0 
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Fig. 7. First exchange of S1 when HPSA1 is applied and first
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6 Experimental Results 

To study the performances of our algorithms in execution time, a random DAG 
generator is designed by ourselves. The generator requires the following input 
parameters: i) graph level GL, ii) the number of processors NoP, iii) the maximal 
outdegree of task is 3.  Without loss of generality, all DAGs are required a single 
entry node and an exit node. The computation time is selected randomly from 3 to 7, 
and the communication time is selected randomly from 2 to 6. 
 

We did two sets of experiments: i) fork tasks in DAG have the same computation 
cost, ii) fork tasks in DAG have -1~1 different computation cost. Every set of 
experiments use 10 random generated DAGs when GL=5, 6, 7 in accordance with 
NoP=6, 8, 9, respectively. We compare the average execution times (msec) of TANH, 
TANH+HPSA, and HCNF. The experimental results are shown in Fig. 8 and Fig. 9, 
respectively.   

For the first set of experiments, the sum of schedule length of TANH+HPSA1 has 
3.82%, 1.79%, and 2.98% decrements than that of TANH when GL=5, 6, 7 in 
accordance with NoP=6, 8, 9. The sum of schedule length of TANH+HPSA2 has 
4.36%, 1.79%, and 2.98% decrements than that of TANH when GL=5, 6, 7 in 
accordance with NoP=6, 8, 9. To the same DAGs, in the case of HCNF, the sum of 
schedule length of TANH+HPSA1 has 1.67%, 4.14%, and -1.68% decrements than 
that of HCNF. The sum of schedule length of TANH+HPSA2 has 2.23%, 4.14%, and 
-1.68% decrements than that of HCNF. 
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Fig. 8. The execution time comparison for fork tasks with the same computation time in DAG. 
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Fig. 9. The execution time comparison for fork tasks with -1~1 different computation time in 
DAG. 

 
For the second set of experiments, the sum of schedule length of TANH+HPSA1 

has 2.96%, 0.83%, and 1.73% decrements than that of TANH when GL=5, 6, 7 in 
accordance with NoP=6, 8, 9. The sum of schedule length of TANH+HPSA2 has 
3.5%, 0.66%, and 2.25% decrements than that of TANH when GL=5, 6, 7 in 
accordance with NoP=6, 8, 9. To the same DAGs, in the case of HCNF, the sum of 
schedule length of TANH+HPSA1 has -5.56%, 2.18%, and -6.98% decrements than 
that of HCNF. The sum of schedule length of TANH+HPSA2 has -4.97%, 1.96%, and 
-6.42% decrements than that of HCNF. 

The execution times of TANH+HPSA1 are 11%~74% increments than those of 
TANH, and 4%~40% increments than those of TANH in case of TANH+HPSA2. So 
our algorithms used short execution times to improve the schedule length of the 
previous algorithms. 

7 Conclusions  

In this paper, we present two postprocessing algorithms for previous algorithms in 
heterogeneous computing systems. HPSA1 and HPSA2 are executed at the hind of 
TANH algorithm. If DAG does not satisfy the optimality conditions of TANH, 
TANH+HPSA can reduce the schedule length given by TANH. Otherwise it preserves 
the schedule length. Our algorithms spend very short execution time. Thus they can 
be efficiently added to other scheduling algorithms in heterogeneous systems. 
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