
Efficient Parallel Algorithm for Constructing a

Unit Triangular Matrix with Prescribed Singular
Values

Georgina Flores-Becerra12, Victor M. Garcia1, and Antonio M. Vidal1

1 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, España
{gflores, vmgarcia, avidal}@dsic.upv.es

2 Departamento de Sistemas y Computación. Instituto Tecnológico de Puebla
Av. Tecnológico 420, Col. Maravillas, C.P. 72220, Puebla, México

Abstract. The problem tackled in this paper is the parallel construc-
tion of a unit triangular matrix with prescribed singular values, when
these fulfill Weyl’s conditions [9]; this is a particular case of the Inverse
Singular Value Problem. A sequential algorithm for this problem was
proposed in [10] by Kosowsky and Smoktunowicz. In this paper parallel
versions of this algorithm will be described, both for shared memory and
distributed memory architectures. The proposed parallel implementation
is better suited for the shared memory paradigm; this is confirmed by the
numerical experiments; the shared memory version, reaches an efficiency
over 90%, and reduces substantially the execution times compared with
the sequential algorithm.

1 Introduction

Inverse problems can be found in many branches of Science and Engineering,
such as simulation of mechanical systems, geophysics, tomography, and many
others [3, 6, 11, 12]. A particular instance of this family of problems is the Inverse
Singular Value Problem (ISVP), which can be defined as:

Given a set of n positive real numbers S∗ = {s∗1, s∗2, ..., s∗n}, where s∗1 ≥ s∗2 ≥
... ≥ s∗n, find a matrix A ∈ <nxn, with a certain structure, whose singular values
are S∗.

There exist several algorithms to solve this problem, such as MI, MIII, EP
and FB [5], which are iterative Newton-like algorithms, with high computational
cost (O(n4) for MI, MIII and EP; and O(n6) for FB). If the desired matrix must
have a certain structure, the computational costs can be drastically reduced. As
an example, the ISVP problem for Toeplitz matrices can be solved with Newton
algorithms with cost O(n3).

The problem of the construction of a unit lower triangular matrix A ∈ Rn×n,
such that the singular values of A are s∗1 ≥ s∗2 ≥ ... ≥ s∗n, was proposed by
Kosowski and Smoktunowicz in [10]. It can be seen as a special case of the



ISVP which could be named Inverse Unit Triangular Singular Value Problem
(IUTSVP). The existence of solution was given by Horn [9], who proved that
such matrix A exists if and only if the following conditions are fulfilled (these
are called Weyl conditions):

s∗1s
∗
2s

∗
3...s

∗
i ≥ 1, (i = 2 : n) and s∗1s

∗
2s

∗
3...s

∗
n = 1.

Kosowski and Smoktunowicz proposed an O(n2) algorithm (based on Horn’s
proof) to solve the IUTSVP. It is a direct algorithm (that is, it solves the problem
in a finite number of steps), in contrast with the iterative methods needed to
solve the general ISVP.

This paper is focused on the design of a parallel version of the algorithm
proposed by Kosowski and Smoktunowicz, and its implementation for shared
memory and distributed memory computers; of course, the primary goal is the
reduction of the time needed to solve this problem. Both implementations are
compared from different points of view.

This paper is organized as follows: The theoretical background, along with
the sequential algorithm are shown in the Section 2. In Section 3 the distributed
memory parallel algorithm is introduced and discussed, and the shared memory
algorithm is discussed in Section 4. In these three sections numerical results are
given. Finally, in Section 5 the results obtained are compared and analyzed,
offering the conclussions of the study.

2 Method based in Weyl’s conditions(WE Method)

The method proposed by Kosowski and Smoktunowicz to solve IUTSVP is based
on the construction of a sequence of unit lower triangular matrices A(i) (i = 1 : n)
equivalent to the diagonal matrix diag(s∗1, s

∗
2, ..., s

∗
n)3. To build the matrices of

this sequence the following lemma is applied:

Lemma 1. Two real numbers s∗i , s
∗
j > 0 such that s∗i ≥ 1 ≥ s∗j or s∗j ≥ 1 ≥ s∗i ,

are the singular values of the matrix

[

1 0
√

(s∗2i − 1)(1 − s∗2j ) s∗i s
∗
j

]

.

This lemma leads to take submatrices 2 × 2 of A(i) (i = 1 : n) in the form
diag(di, dj) such that di, dj fulfill

di ≥ 1 ≥ dj or dj ≥ 1 ≥ di. (1)

To ensure that (1) is fulfilled, Kosowski et.al. apply the next lemma:

3 Two matrices M and N are unitarily equivalent if exist unitary matrices U , V such
that M = UNV t; under these conditions M and N shall have the same singular
values.



Lemma 2. If the real numbers s∗1 ≥ s∗2 ≥ ... ≥ s∗n > 0 satisfy Weyl’s conditions,

then there exists a permutation {d1, d2, ..., dn} of {s∗1, s∗2, ..., s∗n} such that

d1d2...di−1 ≥ 1 ≥ di or di ≥ 1 ≥ d1d2...di−1 (i = 2 : n). (2)

Given the matrix A(1) = diag(d1, d2, ..., dn), and if d1 and d2 satisfy (1), then
the following matrix exists:

L(2) =

[

1 0
√

(d2
1 − 1)(1 − d2

2) d1d2

]

with singular values d1, d2. Then, we can build A(2) = diag(L(2), D
(1)
n−2×n−2),

where D
(1)
n−2×n−2 = diag(d3, d4, ..., dn). A(2) is equivalent to A(1) because there

exist 2× 2 unitary matrices U (2), V (2) such that L(2) = U (2)diag(d1, d2)V
(2)T .

Once A(2) has been built, starts an iterative process to build A(3), A(4), ...A(n).
For example, the construction of A(3) is based on the singular value decomposi-
tion (SVD) of the 2 × 2 matrix L(3):

L(3) =

[

1 0
√

(d2
1d

2
2 − 1)(1 − d2

3) d1d2d3

]

= U (3) diag(d1d2, d3) V (3)T (3)

and the A(3) can be written as A(3) = Q(3)A(2)Z(3)T , where:

Q
(3) = diag(I1×1, U

(3)
, In−3×n−3), Z

(3)T = diag(I1×1, V
(3)T

, In−3×n−3), (4)

A(2) =

















1 0 0 0 ... 0
√

(d2
1 − 1)(1 − d2

2) d1d2 0 0 ... 0
0 0 d3 0 ... 0

0 0 0 d4 ... 0
...

...
...

...
. . .

...
0 0 0 0 ... dn

















=





B
(2)
1×1

C
(2)
2×1 diag(d1d2, d3)

D
(2)
n−3×n−3





(5)

(See eq. (8) for the definition of B) and, performing the matrix multiplications,
A(3) can be written as:

A(3) =







B
(2)
1×1

U (3)C
(2)
2×1 L(3)

D
(2)
n−3×n−3






. (6)

The same procedure is followed to compute A(4), A(5), ..., A(n). The final re-
sult will be the unit lower triangular matrix A(n), whose singular values are S∗.
Therefore, if the numbers pi, zi are defined as follows:

pi = d1d2...di, (i = 1 : n); and zi =
√

(p2
i−1 − 1)(1 − d2

i ), (i = 2 : n); (7)



A(n) has the form:

A(n) =

[

B
(n−1)
n−2×n−2

U
(n)
2×2C

(n−1)
2×n−2 L

(n)
2×2

]

,

where B
(n−1)
n−2×n−2, U

(n)
2×2C

(n−1)
2×n−2 and L

(n)
2×2 are:

B
(n−1)
n−2×n−2 =

















1 0 ... 0

u
(3)
11 z2 1 ... 0

u
(4)
11 u

(3)
21 z2 u

(4)
11 z3 ... 0

...
...

. . .
...

u
(n−1)
11 u

(n−2)
21 ...u

(3)
21 z2 u

(n−1)
11 u

(n−2)
21 ...u

(4)
21 z3 ... 1

















(8)

U
(n)
2×2C

(n−1)
2×n−2 =

[

u
(n)
11 u

(n−1)
21 ...u

(3)
21 z2 u

(n)
11 u

(n−1)
21 ...u

(4)
21 z3 ... u

(n)
11 zn−1

u
(n)
21 u

(n−1)
21 ...u

(3)
21 z2 u

(n)
21 u

(n−1)
21 ...u

(4)
21 z3 ... u

(n)
21 zn−1

]

(9)

L
(n)
2×2 =

[

1 0
zn pn

]

=

[

1 0
zn 1

]

. (10)

From these equations (8), (9) and (10), it becomes clear that A(n) can be
built with the entries of the U (i) (i = 3 : n) matrices and the pi (i = 1 : n), zi

(i = 2 : n) and di (i = 1 : n) values. U (i) is the matrix of the left singular vectors
of

L(i) =

[

1 0
zi pi

]

. (11)

The algorithm to compute A(n) (called WE), must start by computing di (i =
1 : n), since pi (i = 1 : n) and zi (i = 2 : n) depend on di; recall that these
dis are a permutation of S∗ that can be built using the Lemma 2; the algorithm
that performs this permutation is taken from [10].

The WE algorithm can be written as follows:

Algorithm Sequential WE

1: build d (as mentioned above, taken from [10])

2: compute pi (i = 1 : n) and zi (i = 2 : n), in accordance with (7)

3: build L(i) (i = 3 : n), in accordance with (11)

4: compute SVD(L(i)) to obtain U (i) (i = 3 : n), using LAPACK dgesvd

5: build A(n) as shown in (8-10), using BLAS [dgemm/dscal]

It was proved in [10] that the time complexity of the WE Algorithm is

T (n) =

{

n2 +
328n

3

}

tf ,

where tf is the execution time for a single floating point operation.
Table 1 shows the results of some numerical experiments with the WE al-

gorithm, where S denotes the singular values of the computed lower triangular
matrix. In all the cases the results are quite good.



Table 1. Experimental Results (accuracy) with WE algorithm

n 4 5 8 30 50 100 150 300 500

‖S∗ − S‖2 4e-16 4e-16 5e-16 1e-15 1e-15 2e-14 4e-14 8e-15 1e-14
‖S∗−S‖2

‖S∗‖2

1e-16 3e-17 1e-16 1e-16 1e-16 3e-16 2e-16 3e-16 5e-16

3 Parallel algorithm for Distributed Memory model

The tools to implement the distributed memory version were standard linear
algebra subroutines and libraries, such as LAPACK [1], BLAS [8] and the com-
munications library BLACS [4] over MPI [7].

Recall that U (i) (i = 3 : n) depends on the SVD of L(i), and L(i) (see (11))
depends on pi and zi (defined in (7)). Each element of p can be computed inde-
pendently of the others; as zi depends on pi−1 and di, zi can also be computed
in parallel with zj (j = 2 : n, j 6= i). Then, the SVD of the matrices L(i) can
also be computed in parallel and the U (i) matrices can be computed at the same
time.

On the other hand, in the former section it was proved that A ≡ A(n) can be
computed without explicitly computing A(1), A(2), ..., A(n−1). In order to avoid
unnecessary floating point operations, we can order the products of each row of
A as in the following scheme (suppose the 5-th row of a 6 × 6 matrix A):

with U (6): ⇒ A5,1:6 = u
(6)
11 1

with U (5): A5,4u
(5)
21 ⇒ A5,1:6 = u

(6)
11 u

(5)
21 u

(6)
11 1

with U (4): A5,3u
(4)
21 ⇒ A5,1:6 = u

(6)
11 u

(5)
21 u

(4)
21 u

(6)
11 u

(5)
21 u

(6)
11 1

with U (3): A5,2u
(3)
21 ⇒ A5,1:6 = u

(6)
11 u

(5)
21 u

(4)
21 u

(3)
21 u

(6)
11 u

(5)
21 u

(4)
21 u

(6)
11 u

(5)
21 u

(6)
11 1

The general expressions of this procedure are:

Ai,i−2 = u
(i−2)
21 ; Ai,j = Ai,j+1u

(j)
21 ; (i = n; j = i − 3, i− 2, ..., 1); (12)

Ai,i−1 = u
(i−1)
11 ; Ai,j = Ai,j+1u

(j)
21 ; (i = 2 : n− 1; j = i− 2, i− 3, ..., 1). (13)

To finish the construction of A, the columns of the lower triangular of A, (except
the diagonal), are multiplied with the values of z; this operation can be expresed
by:

Aij = zjAij ; (i = 2 : n; j = 1 : i − 1). (14)

Then, the rows of A can be obtained simultaneously if the values of U and z are
available.

Therefore, there are three sections of the WE algorithm amenable for paral-
lelization: the computing of the U matrices, the z components and the A rows. In



this work, the parallelization consists in the distribution of the n−1 components
of z (z2,...,zn), (n − 2) U i matrices (U (3),...,U (n)) and n − 1 rows of A (A2,1:1,
A3,1:2, A4,1:3,...,An,1:n−1) among P processors.

To control the distribution of the work among the processors two indexes
have been used, called low and up, which give the limits of the subinterval of
components of U and z which each processor must compute.

The distribution of the work needed to obtain A is controlled through the
data structures Rows and CountRows; Rows controls which rows of A belongs
to each processor, and CountRows gives the number of rows in each processor.
The distribution of pairs of rows is made trying to equilibrate the computational
work. For example, if n = 20 and P = 7, the following pairs of rows can be
formed:

pairs (2,20) (3,19) (4,18) (5,17) (6,16) (7,15) (8,14) (9,13) (10,12) (11,-)

flops 36 38 38 38 38 38 38 38 38 19

The pairs are formed picking rows from both extremes, so that the total
number of flops is approximately the same for every processor. In the example,
each processor owns a pair, and the rest of the pairs are distributed among the
processors:

Proc 0 1 2 3 4 5 6

Rows 2, 20, 9 3, 19, 13 4, 18, 10 5, 17, 12 6, 16, 11 7, 15 8, 14
CountRows 3 3 3 3 3 2 2

To implement this idea in a distributed memory computer, all the arrays
Rows, CountRows, U and z must be available in all the processors; therefore,
the algorithm must contain at least two communication stages. The following
diagram outlines how this is scheduled for the case n = 19, P = 4:

Proc0 Proc1 Proc2 Proc3

Build d1:n d1:n d1:n d1:n

Compute z3:7 z8:11 z12:15 z16:19,2

Compute U (3)...U (7) U (8)...U (11) U (12)...U (15) U (16)...U (19)

⇐ −−−−−−−−−−−−−−−−−−−−− ⇒
All–to–All Broadcast of U and z

⇐ −−−−−−−−−−−−−−−−−−−−− ⇒

A2,1, A19,1:18 A3,1:2, A18,1:17 A4,1:3, A17,1:16 A5,1:4, A16,1:15

Compute A16,1:15, A15,1:14 A7,1:6, A14,1:13 A8,1:7, A13,1:12 A9,1:8, A12,1:11

A11,1:10 A10,1:9

⇐ −−−−−−−−−−−−−−−−−−−−−
All–to–One communication to build A in Proc0

⇐ −−−−−−−−−−−−−−−−−−−−−

The algorithm for the distributed computation of z, U and A is described
below.



Algorithm Parallel WE

In Parallel For Proc = 0, 1, ..., P − 1
1: build d

2: compute pi, zi (i = low : up), in accordance with (7)

3: build L(i) (i = low : up), in accordance with (11)

4: compute SVD(L(i)) to obtain U (i) (i = low : up),

using LAPACK dgesvd

5: All-to-all broadcast of z and U, using BLACS dgeb[r/s]2d

6. compute Aij (i = Rows1, RowscountRows; j = 1 : i − 2),
in accordance with (12-14)

7: All-to-One Reduction of A to Proc = 0,
using MPI [Pack/Send/Recv]

EndParallelFor

3.1 Theoretical and Experimental Costs

The code described above has been tested in a cluster of 2GHz biprocessor
Intel Xeons (Kefren4) composed of 20 nodes, each one with 1 Gbyte of RAM,
disposed in a 4 × 5 mesh with 2D torus topology and interconnected through a
SCI network.

The theoretical analysis of the Parallel WE algorithm shows that its speedup
is severely affected by the construction of A in the processor Proc0, since the

volume of data to be transferred is O
(

n2

√
P

)

, as can be seen in the theoretical

execution time:

TWE(n, P ) =

{

n2

P
+

322n

3P
+ 2n− 656

3P

}

tf + 5
√

Ptm +
n2 + 4n√

P
tv ,

where tm is the network latency and tv is the inverse of the bandwidth; therefore,
the WE speedup does not reach the theoretical optimum, according with the
following expression:

lim
n→∞

SWE(n, P ) =
P

1 +
√

P tv

tf

.

Some experiments performed in the Kefren cluster confirm this behaviour.
The execution times are recorded in the Table 2, where it is quite clear that the
execution times do not decrease when the number of processors increases.

The theoretical cost of the same algorithm without the final construction of
A in the processor Proc0 is:

TWE(n, P ) =

{

n2

P
+

322n

3P
+ 2n − 656

3P

}

tf + 4
√

Ptm +
6n√
P

tv ,

4 http://www.grycap.upv.es/usuario/kefren.htm



this shows that the degree of parallelism reached during the computation of U ,
z and A is theoretically good, since the speedup reaches the optimum asymp-
totically:

lim
n→∞

SWE(n, P ) = P.

The experiments with the algorithm without building A can be seen in the
Table 3. In these experiments there are execution times reductions when we use
more than one processor, except in n = 500, that is a case efficiently solved by
the sequential algorithm. The efficiency of these experiments are in Figure 1. The
efficiency curve at n = {2000, 2500, 3000} represents a typical case where the use
of the processor cache influences the execution times; however, this phenomenon
tends to disappear when the problem size increases.

Table 2. WE Execution Times in Kefren, building A in Proc0

P Seconds

1 0.41 5.08 12.05 22.28 35.76 66.08 191 270
2 2.61 10.27 21.92 39.31 73.79 125 294 456
4 2.59 10.29 22.02 39.66 72.60 113 258 400
6 2.66 10.60 23.26 42.15 72.71 111 244 388
8 2.81 11.63 26.67 45.55 75.08 114 240 328
10 3.00 11.82 26.90 47.61 77.52 115 237 379
12 3.22 11.90 26.74 47.28 77.27 115 232 375
14 3.51 12.13 27.69 48.67 79.58 118 230 370
16 3.69 12.60 28.51 50.44 81.27 120 230 368

n 500 1000 1500 2000 2500 3000 4000 5000

Table 3. WE Execution Times in Kefren, without building A in Proc0

P Seconds

1 0.41 5.08 12.05 22.28 35.76 66.08 191 270
2 2.20 4.68 7.85 12.51 21.30 42.13 104 136
4 1.19 2.56 4.39 7.10 12.23 23.12 53 69
6 0.69 1.89 3.27 5.29 8.96 16.08 35 47
8 0.55 1.55 2.76 4.37 7.18 12.90 27 35
10 0.48 1.39 2.43 3.87 6.21 10.52 21 28
12 0.49 1.26 2.20 3.34 5.43 8.94 18 24
14 0.45 1.18 2.00 3.08 4.92 8.02 16 20
16 0.44 1.10 1.89 2.89 4.49 7.21 14 18

n 500 1000 1500 2000 2500 3000 4000 5000

The reconstruction of a matrix with prescribed singular values is usually a
part of a larger problem to be solved in parallel. So, the gathering of the matrix



in a single processor or the redistribution of the matrix among processors may
be necessary or not, depending on the larger problem. Therefore, the analysis
above shows that, leaving aside the final communications needed to recover the
matrix in a single processor, the resolution of the problem has been reasonably
parallelized. The remaining pitfall will be adressed in the next section.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

Ef
fic

ien
cy

 of
 W

E,
 D

ist
rib

ute
d M

em
or

y

P = 2
P = 4
P = 6
P = 8

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

Ef
fic

ien
cy

 of
 W

E,
 D

ist
rib

ute
d M

em
or

y

P = 10
P = 12
P = 14
P = 16

Fig. 1. Experimental WE Efficiency in Kefren, without building A in Proc0

4 Parallel algorithm for Shared Memory model

The analysis of the costs of the distributed memory code shows that the com-
munications needed to collect the results and put it in a single processor damage
seriously the performance of the code. In a Shared Memory Machine, this last
step would be not needed, so that it is a natural way to improve the overall
speed of the code. This implementation has been carried out using OpenMP [2]



compiler directives, such as omp parallel do (to parallelize a loop), omp parallel

(to parallelize a section of code), omp barrier (to synchronize execution threads)
and omp do (to define shared work in a cycle).

Using H process threads and assuming that each one is executed in one
processor (P = H), each thread shall compute a subset of components of z,
U and A; it was seen in the last section that there are no data dependency
problems.

The data distribution of z, U and A might be performed by the program-
mer as in the distributed memory code (through indexes low, up, Rows and
CountRows). However, in this case it is more efficient to let the openMP com-
piler do the job; the directives omp parallel do and omp do split the work among
processors automatically. The following diagram shows schematically how would
proceed the computation:

Thread Th0 Th1 Th2 Th3

Build d1:n −−−−− −−−−− −−−−−

Compute z3:7 z8:11 z12:15 z16:19,2

Compute U (3)...U (7) U (8)...U (11) U (12)...U (15) U (16)...U (19)

⇐ −−−−−−−−−−−−−−−−−−−−− ⇒
Synchronisation Barrier

⇐ −−−−−−−−−−−−−−−−−−−−− ⇒

A2,1, A3,1:2, A4,1:3 A6,1:5, A7,1:8 A10,1:9, A11,1:10 A14,1:13, A15,1:14

Compute A5,1:4, A18,1:17 A8,1:7, A9,1:8 A12,1:11, A13,1:12 A16,1:15, A17,1:16, A19,1:18

Comparing this diagram with the Distributed Memory diagram, it is clear
that the communication stages disappear, so that the efficiency is expected to
increase. This process is written with detail in the ParallelSh WE algorithm,
where we have used omp parallel in order to create a team of threads (Th1,
..., ThH−1), to run in parallel a code segment, and in ParallelSh A and Paral-
lelSh zU algorithms, where the directive omp do was used to divide the iterations
(of the ”for” loop) among the the threads created with omp parallel.

Algorithm ParallelSh WE

1: build d /* executed by the main thread */

2: !$omp parallel private(Th) /* slave threads created by

3: call ParallelSh zU the main thread */

4: !$omp barrier

5: call ParallelSh A

6: !$omp end parallel /* slave threads finished by

the main thread */

Algorithm ParallelSh A

1: !$omp do /* The iterations are divided among the threads */

2: For i = 2, 3, ..., n

3: compute Ai,1:i−1, in accordance with (12-14)

4: EndFor

5: !$omp enddo



Algorithm ParallelSh zU

1: !$omp do /* The iterations are divided among the threads */

2: For i = 3, 4, ..., n

3: compute zi−1, pi, in accordance with (7)

4: build L(i), in accordance with (11)

5: compute SVD(L(i)) to obtain U (i), using LAPACK dgesvd

6: EndFor

7: !$omp enddo

8: If Th = ThH−1 compute z1, in accordance with (7)

4.1 Experimental Tests

The shared memory code has been tested in a multiprocessor (Aldebaran5) SGI
Altix 3700 with 48 processors Intel 1.5 GHz Itanium 2, each one with 16 Gbytes
of RAM; these are connected with a SGI NumaLink network, with hypercube
topology. Although from the programmer’s point of view it is a shared memory
multiprocessor, actually it is a distributed memory cluster as well, though with
a very fast interconnection network. The execution times in this machine are
summarized in the Table 4.

The efficiency corresponding to these experiments (Figure 2) is good even
with relatively small problem sizes. With n = 1000 and two threads the efficiency
is 81%; from n = 2000 the efficiency is very good with up to 4 threads and
acceptable for 6. For the largest case tested in this work (n = 5000) the efficiency
with 6 threads is also good.

Table 4. WE execution times in Aldebaran (Shared memory)

H Seconds

1 1.3 4.9 10.1 22 26 37 68 95
2 1.0 3.1 6.1 12 14 20 35 48
3 0.64 2.1 4.3 9.0 10 14 23 31
4 0.55 1.6 3.4 7.4 7.1 10 18 23
6 0.45 1.1 2.7 5.0 6.2 9 16 18
8 0.44 1.1 2.6 4.3 5.5 8 13 17
10 0.33 1.2 2.3 3.7 4.8 7 10.3 16
12 0.35 1.0 2.6 3.7 4.6 6.1 10.2 13
14 0.32 0.9 2.2 3.3 4.2 6.0 9.8 11
16 0.25 0.8 2.1 3.2 4.1 5.4 9.6 10

n 500 1000 1500 2000 2500 3000 4000 5000

The Scaled Speedup is computed increasing in the same proportion the size
of the problem and the number of threads; as WE is O(n2) we have taken its

5 http://www.asic.upv.es



Speedup with n ={1000, 1400, 2000, 2800, 3400, 4000} respectively with H ={1,
2, 4, 8, 12, 16} in Figure 3. This figure shows an acceptable scalability.

2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Threads (H)

Ef
fic

ien
cy

 of
 W

E,
 S

ha
red

 M
em

or
y

n = 500
n = 1000
n = 1500
n = 2000

2 4 6 8 10 12 14 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Threads (H)

Ef
fic

ien
cy

 of
 W

E,
 S

ha
red

 M
em

or
y

n = 2500
n = 3000
n = 4000
n = 5000

Fig. 2. Experimental WE Efficiency in Aldebaran (Shared memory)

5 Conclusions

The parallel code written for distributed memory reaches a good level of paral-
lelism, as far as the computation phase is concerned. However, once the matrix
is computed, it could be necessary to bring it back to a single processor or
redistribute it among processors, by depending of the design of the parallel algo-
rithm that uses this matrix; these communications spoil all the gains obtained
with the parallel code. This trouble can be overcome if the same algorithm is
adapted to a shared memory machine, where these final communications would
not be needed. Furthermore, some communications that would happen in the



0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

Number of Threads (H)

Sc
ale

d S
pe

ed
up

 of
 W

E,
 S

ha
re

d M
em

or
y

n=1000

n=1400

n=2000

n=2800

n=3400

n=4000

Fig. 3. WE Scaled Speedup in Aldebaran. Shared memory

distributed memory code (replicating U , z) would not be necessary either in the
shared memory code.

We can establish the following comparisons between both approaches:

Shared Memory Distributed Memory

* Easy Implementation * Complex Implementation
* No extra data structures * Require extra data structures
* Load Distribution through * Load Distribution by the programmer
compiler directives
* Efficiency larger than * Do not reach acceptable performance due
90% with up to 4 threads to the last communications stage

Therefore, the shared memory implementation decreases the execution times
of the sequential WE code, and gives good performances with up to 4 threads. It
reaches an efficiency > 90% (Figure 2), obtaining as well an acceptable scalability
(Figure 3). The performance is damaged when more than 4 threads are used; this
is due to the fact that the machine Aldebaran is a multiprocessor with logically
shared but physically distributed memory, so that at the end there is a large
(transparent to the programmer) traffic of messages.

It seems clear that the nature of this problem makes it more addequate to be
processed in a shared memory environment, rather than in a distributed memory
cluster.

Acknowledgement

This work has been supported by Spanish MEC and FEDER under Grant
TIC2003-08238-C02-02 and SEIT-DGEST-SUPERA-ANUIES (México).



References

1. Anderson E., Bai Z., Bishof C., Demmel J., Dongarra J.: LAPACK User Guide;
Second edition. SIAM (1995)

2. Chandra, R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R.: Parallel
Programming in OpenMP. Morgan Kaufmann Publishers (2001)

3. Chu, M.T.: Inverse Eigenvalue Problems. SIAM, Review, Vol. 40 (1998)
4. Dongarra J., Van de Geijn R.: Two dimensional basic linear algebra comunications

subprograms. Tecnical report st−cs−91−138, Department of Computer Science,
University of Tennessee (1991)

5. Flores-Becerra G., Garćıa V. M., Vidal A. M.: Numerical Experiments on the So-
lution of the Inverse Additive Singular Value Problem. Lecture Notes in Computer
Science, Vol. 3514, (2005) 17-24

6. Groetsch, C.W.: Inverse Problems. Activities for Undergraduates. The mathemat-
ical association of America (1999)

7. Groupp W., Lusk E., Skjellum A.: Using MPI: Portable Parallel Programming with
Message Passing Interface. MIT Press (1994)

8. Hammarling S., Dongarra J., Du Croz J., Hanson R.J.: An extended set of fortran
basic linear algebra subroutines. ACM Trans. Mathemathical Software (1988)

9. Horn A.: On the eigenvalues of a matrix with prescribed singular values. Proc.
Amer. Math. Soc., Vol. 5, (1954) 4-7

10. Kosowski P., Smoktunowicz A.: On Constructing Unit Triangular Matrices with
Prescribed Singular Values. Computing, Vol. 64, No. 3 (2000) 279-285

11. Neittaanmki, P., Rudnicki, M., Savini, A.: Inverse Problems and Optimal Design
in Electricity and Magnetism. Oxford: Clarendon Press (1996)

12. Sun, N.: Inverse Problems in Groundwater Modeling. Kluwer Academic (1994)


