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Abstract. This paper presents the parallelization of a self-verified method for
solving dense linear equations. Verified computing provides an interval result that
surely contains the correct result. The advent of parallel computing and its impact
in the overall performance of various algorithms on numerical analysis have been
increasing in the last decade. Two main points of this method, which demand a
higher computational cost, were carried out: the backward/forward substitution
of a LU-decomposed matrix A and an iterative refinement step. Our main contri-
bution is to point out the advantages an drawbacks of our approach, in order to
popularize the use of self-verified computation.

1 Introduction

The ability to develop mathematical models in Biology, Physics, Geology and other
applied areas has pull, and has been pushed by, the advances in High Performance
Computing. Moreover, the use of iterative methods have increased substantially in many
application areas in the last years [9, 25]. One reason for that, is the advent of parallel
computing and its impact in the overall performance of various algorithms on numerical
analysis [4].

The use of clusters plays an important role in such scenario as one of the most effec-
tive manner to improve the computational power without increasing costs to prohibitive
values. However, in some cases, the solution of numerical problems frequently presents
accuracy issues increasing the need for computational power.

Verified computing provides an interval result that surely contains the correct re-
sult [16]. Numerical applications providing automatic result verification may be useful
in many fields like simulation and modelling. Finding the verified result often increases
dramatically the execution time [20]. However, in some numerical problems, the ac-
curacy is mandatory. The requirements for achieving this goal are: interval arithmetic,
high accuracy combined with well suitable algorithms.

The interval arithmetic defines the operations for interval numbers, such that the
result is a new interval that contains the set of all possible solutions. The high accuracy
arithmetic ensures that the operation is performed without rounding errors, and rounded
only once in the end of the computation. The requirements for this arithmetic are: the
four basic operations with high accuracy, optimal scalar product and direct rounding.



These arithmetics should be used in appropriate algorithms to ensure that those proper-
ties will be hold. There is a multitude of tools that provide verified computing, among
them an attractive option is C-XSC (C for eXtended Scientific Computing) [15]. C-
XSC is a free and portable programming environment for C and C++ programming
languages, offering high accuracy and automatic verified results. This programming
tool allows the solution of several standard problems, including many reliable numeri-
cal algorithms.

For example, in the solution of linear systems even very small systems may present
accuracy problems. To illustrate this problem [1], we may observe the solution of the
system Ax = b with the following values for A and b:

A =
(

64919121 −159018721
41869520.5 −102558961

)
b =

(
1
0

)

The correct solution would obviously be:

x1 =
a22

a11a22 − a12a21
= 205117922 x2 =

−a21x1

a22
= 83739041

However, using the IEEE double precision arithmetic and LU decomposition the
absolutely wrong results would be:

x̃1 = 102558961 x̃2 = 41869520.5

One possible solution to cope that problem would be the use of correct computation
through the use of interval arithmetic [1].

This paper presents a parallel version of the self-verified method for solving linear
systems. Our main contribution is to popularize the use of self-verified computation
trough its parallelization, once without parallel techniques it becomes the bottleneck of
an application.

The organization of this paper is as follows. In the next section, some related works
are discussed and compared to the solution proposed. In section 3, an explanation of
the self-verified method used for parallelization and its mathematical background are
presented. Section 4 shows the parallel solution for the chosen self-verified method.
The analysis of the results obtained through this parallelization is presented in section 5.
Finally, the conclusion and some future works are given in last section.

2 Related Work

The solution of large (dense or sparse) linear systems is considered an important
part of numerical analysis, and often requires a large amount of scientific computations
[9, 25]. More specifically, the most time consuming operations in iterative methods for
solving linear equations are inner products, vector successively updates, matrix-vector
products and also iterative refinements [7, 12]. Tests pointed out that the Newton-like
iterative method, presents a iterative refinement step and uses a inverse matrix obtained
through the backward/forward substitution (after LU decomposition), which are the
most time consuming operations.



The parallel solutions for linear solvers found in the literature explore many aspects
and constraints related to the adaptation of the numerical methods to high performance
environments [19, 21]. However, the proposed solutions are not often realistic, and
mostly deal with unsuitable models for high performance environments of distributed
memory as clusters of workstations [22]. In many theoretical models (such as the
PRAM family) the transmission cost to data exchange is not considered [22], but in
distributed memory architectures this issue is crucial to gain performance.

Nevertheless, the difficulty in parallelizing some numerical methods, mainly itera-
tive schemes, in an environment of distributed memory, is the interdependency among
data (e.g. the LU decomposition) and the consequent overhead needed to perform in-
terprocess communication (IPC) [3, 30]. Due to this, in a first approach some modi-
fications were done in the backward/ forward substitution procedure [8] to allow less
communications and independent computations over the matrix. Another possible op-
timization when implementing for such parallel environments is to reduce communi-
cation cost through the use of load balance techniques, as we can see in some recent
parallel solutions for linear systems solvers [30]. Anyway, their focus was toward the
issues related to MPI implementation through a theoretical performance analysis. Few
works were found related to numerical analysis of parallel implementations of iterative
solvers, mainly using MPI. Moreover, some interesting papers found present algorithm
which allow the use of different parallel environments [2, 5, 17]. However, those papers
(like others) does not deal with verified computation. We also found some works which
focus on verified computing [6] and both verified computing and parallel implementa-
tions [14, 29], but these thesis implement other numerical problems or use a different
parallel approach.

Another concern is the implementation of selfverified numerical solvers which al-
low high accuracy operations. The researches already made, show that the execution
time of the algorithms using this kind of routines is much larger than the execution time
of the algorithms which do not use it [11, 10]. The C-XSC library was developed to pro-
vide functionality and portability, but early researches indicate that more optimizations
may be done to provide more efficiency, due to additional computational cost in sequen-
tial, and consequently for other environments as Itanium clusters. Some experiments
were conducted over Intel clusters to parallelize selfverified numerical solvers that use
Newton-based techniques but there are more tests that may be done [11]. Hereby we
propose new adaptations of the current algorithms to speedup this data calculation us-
ing technologies as MPI communications functions associated to the C-XSC library to
improve higher precision [27], selfverification and speedups at the same time. More-
over, the major goal of this paper is point out the advantages and the drawbacks of
the parallelization of a self-verifying method for solving linear systems over distributed
environments.

3 Background

One of the most frequent tasks in numerical analysis is the solution of systems of
linear equations like:

Ax = b (1)



With an n × n matrix A ∈ Rn×n and a right hand side b ∈ Rn. Many different
numerical algorithms contain this task as a subproblem.

In equation 1, we assume the coefficient matrix A in equation 1 to be dense, i.e.
in a C-XSC program, we use a square matrix of type rmatrix, to store A and we do
not consider any special structure of the elements of A. Our goal is to make a parallel
version of the C-XSC algorithm that verifies the existence of a solution and computes
an enclosure for the solution of system Ax = b for a square n × n matrix A with a
better performance as the sequential version.

The algorithm 1 used as base of our parallel version is described in [8] and will, in
general, succeed in finding and enclosing a solution or, if it does not succeed, will tell
the user so. In the latter case, the user will know that the problem is probably very ill
conditioned or that the matrix A is singular.

Algorithm 1 Compute an enclosure for the solution of the square linear system Ax = b.
1: R ≈ A−1 {Compute an approximate inverse using LU-Decomposition algorithm}
2: x̃ ≈ R · b {compute the approximation of the solution}
3: [z] ⊇ R(b−Ax̃) {compute enclosure for the residuum (without rounding error)}
4: [C] ⊇ (I −RA) {compute enclosure for the iteration matrix (without rounding error)}
5: [w] := [z], k := 0 {initialize machine interval vector}
6: while not [w] ⊆ int[y] or k > 10 do
7: [y] := [w]
8: [w] := [z] + [C][y]
9: k + +

10: end while
11: if [w] ⊆ int[y] then
12: Σ(A, b) ⊆ x̃+[w]{The solution set (Σ) is contained in the solution found by the method}
13: else
14: ”no verification”
15: end if

We give now a brief summary of the enclosure methods theory. A more detailed
presentation can be found in [23]. A solution of the system Ax = b be found is equiv-
alent to finding a zero of f(x) = Ax − b, such that A ∈ Rn×n and b, x ∈ Rn. Using
Newton’s method we found the fixed-point iteration presented in equation (2):

xk+1 = xk −A−1(Axk − b) (2)

Where x0 is an arbitrary starting value. The inverse of A is not known, so we use
R ≈ A−1 as presented in (3):

xk+1 = xk −R(Axk − b) (3)

When replacing xk for the interval [xk], the fixed-point theorem will not be satisfied.
For this reason, we modify the right-hand side of equation 3, using I as the n×n identity
matrix:



xk+1 = Rb + (I −RA)xk (4)

An approximate solution x̃ of Ax = b may be improved if we try to enclose the
error of the approximate solution finding the residual by solving the system 5, yielding
a much higher accuracy. The error y = x−x̃ of the true solution x satisfies the equation:

Ay = b−Ax̃ (5)

Which can be multiplied by R and rewritten in the form:

y = R(b−Ax̃) + (I −RA)y (6)

Let f(y) := R(b−Ax̃) + (I −RA)y. Then equation 6 has the form

y = f(y) (7)

Of a fixed point equation for the error y. If R is a sufficiently good approximation
of A−1, then an iteration based on equation 7 can be expected to converge since (I −
RA) will have a small spectral radius. These results remain valid if we replace the
exact expression by interval extensions. However, to avoid overestimation effects, it is
recommended to evaluate it without any intermediate rounding. Therefore, we derive
the following iteration from equation 7, where we use interval arithmetic and intervals
[yk] for y:

[y]k+1 = R ¦ (b−Ax̃) + ¦(I −RA)[y]k (8)

or

[y]k+1 = F ([y]k) (9)

Where F is the interval extension of f . Here ¦means that the succeeding operations
have to be executed exactly and the result is rounded to an enclosing interval (vector
or matrix). In the computation of the defect (b − Ax̃) and of the iteration matrix (I −
RA), serious cancellations of leading digits must be expected. Hence, these should be
computed using the exact scalar product. Each component is computed exactly and then
rounded to a machine interval. For this purpose, the scalar product expressions of XSC-
languages are used extensively in the implementations. With z = R(b − Ax̃) (line 3
of algorithm 1) and C = (I − RA) (line 4 of algorithm 1). Thus, equation 8 can be
rewritten as:

[y]k+1 = z + C[y]k (10)

In order to prove the existence of a solution of equation 5 and thus of equation 1, we
use Brouwer’s fixed point theorem, which applies as soon as we have at some iteration
index k + 1 an inclusion of the form:

[y]k+1 = F ([y]k) ⊂ [y]◦k (11)



Where [y]◦k means the interior of [y]k. If this inclusion test (equation 11) holds,
then the iteration function f maps [y]k into itself. From Brouwer’s fixed point theorem,
it follows that f has a fixed point y∗ which is contained in [y]k and in [y]k+1. The
requirement that [y]k is mapped into its interior ensures that this fixed point is also
unique, i.e., equation 5 has an unique solution y∗, and thus equation 1 also has a unique
solution x∗ = x̃ + y∗ .

According to [23], if the inclusion test (equation 11) is satisfied, the spectral radius
of C (and even that of |C|, which is the matrix of absolute values of C) is less than 1,
ensuring the convergence of the iteration (also in the interval case). Furthermore, this
implies also the nonsingularity of R and of A and thus the uniqueness of the fixed point.

A problem which still remains is that we do not know whether we can succeed
in achieving condition, because it may be never satisfied. To force equation 11, we
therefore introduce the concept of ε-inflation, which blows up the intervals somewhat,
in order to ”catch” a nearby fixed point. It can be shown (e.g. in [24]) that equation 11
will always be satisfied after a finite number of iteration steps, whenever the absolute
value |C| of iteration matrix C has spectral radius less than 1.

We have not yet said how we compute our approximate solution x̃ and the approx-
imate Inverse R. In principle, there is no special requirement about these quantities,
we could even just guess them. However, the results of the enclosure algorithm will of
course depend on the quality of the approximations.

We use in our C-XSC program the LU-Decomposition for the computation of R and
x̃. We do not use a special algorithm for the computation of the approximate solution,
since we must compute an approximate inverse R ≈ A−1 anyway. Thus, we also have
immediately an approximate solution x̃ = Rb . The procedure fails if the computation
of an approximate inverse R fails or if the inclusion in the interior cannot be established.

4 Parallel Approach

The Parallel implementation for selfverified method for solving linear systems dis-
cussed on this section was developed in order to allow the use of this new algorithm
in real situations. Thus, it was necessary to achieve better performance without using
parallel programming models oriented to very expensive (but not frequently used) ma-
chines. Useful parallel versions for this algorithm should run distributed over several
processors connected by a fast network. Therefore, the natural choice was a cluster
with a message passing programming model.

As seen in algorithm 1, the selfverified method is divided in some steps. By tests,
the computation of the inverse of matrix A (matrix R on step 1) takes more than 50% of
the total processing time. Similarly, the computation of the interval matrix [C] (parallel
iterative refinement) takes more than 40% of the total time, once matrices multiplication
requires O(n3) execution time, and the other operations are mostly vector or matrix-
vector operations which require at most O(n2). Due to this, both parts of the algorithm
were parallelized, using different techniques.

Our parallel approach involves two different techniques to solve the main bottle-
necks of the original algorithm. First, we used a parallel phases approach to achieve



speedup in the core of the computation bottleneck: the computation of the inverse ma-
trix. The second technique is a worker/manager approach to achieve parallel iterative
refinement. For the sake of clarity we now present each of these two approaches in two
different subsections.

4.1 The Inverse Matrix Computation

The computation of the inverse matrix is done in two major steps: The LU decompo-
sition and the computation of the inverse column by column through backward/forward
substitution. The LU decomposition of matrix A takes 18% of the total time, whereas
the calculation of the inverse by backward/forward substitution takes 34% of the to-
tal time. Thus, the parallelization of R computation were focused only in the back-
ward/forward substitution phase due to the higher computational cost. Moreover, the
parallel LU decomposition is well spread and many different proposals and can be found
in [13, 18, 26, 28]. Those proposals may be perfectly used instead of our choice to find
the inverse matrix.

Like said before, the parallel computation of the inverse matrix through backward/
forward substitution is based on the parallel phases scheme, where every process com-
putes a number of columns (co-named task) of matrix R. After the processing phase, all
processes exchange information aiming the construction of the overall R. It is important
to mention that all processes must know the inverse matrix R, once R is used for fur-
ther parallel computation of interval matrix C. Figure 1 (a) presents the communication
strategy used on this part.

The load balancing approach is made using a simple, yet effective, algorithm that
accomplishes two main constraints. (i) The load balancing is done in parallel, so one
process does not have to concern about the overall load balancing, and hence spend
communication time exchanging information; (ii) It must be fast, so it will not become
a bottleneck in the computation process. Thus, the algorithm representing the load bal-
ancing strategy for both parallelization is shown in algorithm 2.

Algorithm 2 Workload distribution algorithm.
1: if pr ≤ (N%P )1 then
2: lbi = (N

P
× pr) + (pr)

3: ubi = lb + N
P

+ 1
4: else
5: lbi = (N

P
× pr) + (N%P )

6: ubi = lb + N
P

7: end if

Where N is the number of rows or columns of a matrix and P the number of
processes involved on computation. Also, pr represents the identification of a pro-
cess (starting from 1 to P ), lbi is the lower bound and ubi is the upper bound of the
ith process, i.e., the first and the last row/column that a process must compute. With
this load balancing approach, it is clearly that processes receive continuous block of



rows/columns. This choice was adopted to improve the facility on the implementation
of communication step. However, others load balancing schemes could be used without
lost of performance, once the computational cost to process a row/column is the same.

4.2 Parallel Iterative Refinement

Iterative Refinement is known as a way to speedup the method convergence based in
establishing some algebraic constants used to approximate x at each iteration. Focusing
in the iteration formula 4, where I is an identity matrix of the same order of A and R is
a good approximation of A−1, as said before, we may compute the C = (I −RA) as a
iterative refinement step, once it is composed only by numerical constants. This is step
is done in parallel using a worker/manager approach.

The task mapping is done as follows: (i) each process find, based on its rank, a
contiguous block of lines to compute the result matrix (C); (ii) after computing each
process (unless the manager) send their lines to the manager which put in the proper
places the lines received. This step is illustrated by the Figure 1 (b), where the thicker
vertical line means the manager process, and the others vertical lines mean the other
process. After computation, worker processes send their result to manager process.

compute compute compute

Process 3Process 2Process 1

broadcast

broadcast

broadcast

compute compute compute

send send

WorkerWorkerManager

(a) (b)

Fig. 1. communication schemes

5 Results Analysis

In order to verify the accuracy of our parallel solution, some test cases were made
varying on the number of processes and size of the input matrix A and vector b. Matrix
A and vector b were generated by two distinct forms: random numbers and using the
Boothroyd/Dekker formula [8], where

Aij =
(

n+i-1
i-1

)
×

(
n-1
n-j

)
× n

i+j−1 , ∀i, j = 1..N

b = 1, 2, 3, ..., N .



 1
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 5

 6
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 8

 9

 1  2  3  4  5  6  7  8  9

sp
ee

d−
up

number of processors

Speed−up with matrix 100x100

Ideal
Speed−up

# of processes 2 3 4 5 6 7 8
execution time (sec) 0.7457 0.6506 0.5076 0.4276 0.3520 0.3317 0.3052

efficiency (%) 75.85 57.96 55.71 52.91 53.55 48.72 46.32

sequential time: 1.131445
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 1  2  3  4  5  6  7  8  9

sp
ee

d−
up

number of processors

Speed−up with matrix 500x500

Ideal
Speed−up

# of processes 2 3 4 5 6 7 8
execution time (sec) 74.3002 53.2145 41.4681 34.5165 29.4352 25.9633 23.2476

efficiency (%) 88.06 81.97 78.89 75.83 74.10 72.00 70.36

sequential time: 130.870691
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 1  2  3  4  5  6  7  8  9
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ee

d−
up

number of processors

Speed−up with matrix 1000x1000

Ideal
Speed−up

# of processes 2 3 4 5 6 7 8
execution time (sec) 578.2480 410.7169 316.3659 262.2760 222.6202 194.5636 172.2104

efficiency (%) 88.59 83.15 80.96 78.12 76.70 75.22 74.36

sequential: 1024.563750

Fig. 2. Results using the random approach.



For the first one, three matrices sizes were carried out: 100×100 (small), 500×500
(medium) and 1, 000 × 1, 000 (large). The second one it was used a matrix 10 × 10,
to verify that the parallelization did not modify the accuracy of the results. For those
matrices, many executions were tackled with different number of processes (1..P ). All
tests were executed over a cluster of workstations environment, with 8 nodes Pentium
IV 2.8 Ghz, 1Gb RAM using fast ethernet network for inter-processes communication.

The results using the random approach can be seen in figure 2. The first important
remark is that changing the size of matrix, the speedup achieved is better, i.e., as larger
is the input matrix (higher computational cost) the better is the performance obtained.
Although the speedup for medium and large input matrices does not has significant
increases, the results show that the solution proposed improve the performance of the
application. For instance, the speedup∼= 6 achieved with 8 processes can be considered
a good result, since the target architecture is a distributed memory environment.

The execution times presented in of the three tables in figure 2 show a significant
decrease, from the sequential time to the parallel time with 8 processes. This analysis
reinforces the affirmation related to the good parallelization choices. Moreover, the load
balancing strategy adopted has been proven as a good choice, since the efficiencies
presented did not show significant processes suballocation. For the first test case (small
matrix), the efficiencies are worst than for medium and large matrices. Nevertheless, the
efficiencies reached vary from 46.32% up to 88.59%, indicating that tests with higher
matrices may tackle important results. The tests using a 10 × 10 matrix generated by
the Boothroyd/Dekker formula presented same accuracy on both versions (sequential
and parallel).

6 Conclusion

A parallel implementation of a self-verified method to solve dense linear equa-
tions was presented in this paper. Two main points of this method, which demand a
higher computational cost, were carried out: the backward/forward substitution of a
LU-decomposed matrix A and an iterative refinement step.

Several experiments were conducted in order to verify the strong and weak points
of our approach. Three different input matrices were used in these experiments. The
parallel implementation presents a significant gain of performance in all three different
granularities. The results show that our load balancing strategy was successful for all
tested input cases. In all examples, the results were obtained without any lost of ac-
curacy, showing that the gain provided by the self-verified computation could be kept.
The exploration of the scalability limits of the proposed parallel solution will permit the
establishment of the actual contribution of our work. However, even before the execu-
tion of more tests with a higher amount of processors, we can notice rather interesting
speedups for the self-verified computation. Finally, it is the authors opinion that the
results obtained are interesting and the implementation allowed a quite good under-
standing of the problem, leading to promising directions for further investigations.
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