
EdgePack: A parallel vertex and node reordering
package for optimizing edge-based computations in

unstructured grids

Marcos Martins, Renato Elias and Alvaro Coutinho

Center for Parallel Computations and Department of Civil Engineering
Federal University of Rio de Janeiro, P. O. Box 68506,

RJ 21945-970 – Rio de Janeiro, Brazil
{marcos, renato, alvaro}@nacad.ufrj.br

http://www.nacad.ufrj.br

Abstract. A new and simple methodology is proposed to choose the best data
layout for codes using iterative solvers in unstructured grid problems. This
methodology is realized as a suite of routines named EdgePack, acting during
pre-solution and solution phases, based on data locality optimization techniques
and variations of the matrix-vector product algorithm. Results have been
demonstrating the great flexibility and simplicity of this methodology, which is
suitable for distributed memory platforms in which different data configurations
can coexist.

1 Introduction

The performance optimization of codes based on iterative solvers for unstructured
grids based problems has the matrix-vector product algorithm as a key issue. It is well
known that data reordering techniques comprise an effective solution for good
performance results during matrix-vector product computations, due to data locality
optimizations [1]-[12]. Despite these techniques, overall performance can be further
increased by the migration from element based to edge based data structure, as has
been seen in the last decade [11], [13]-[18]. This data structure is quite suitable for
reordering manipulations, strengthening even more the overall performance [19].

The combination of data reordering techniques with edge-based data structures
generates lots of possibilities which can perhaps be the best performance solution for
one or another hardware and software platform [19]. The code performance depends
on many factors namely, computational architecture, compiler options, data
configuration, number of degrees of freedom per node (algorithm complexity) and
algorithm structure itself. According to previous results [19], there is no ultimate data
combination known prior to the processing phase unless a probe is performed, since
the many combinations possible may produce unexpected results.

This work presents a methodology to determine which data combination for a
given computer platform is the best one in terms of processing time. This

2 {marcos, renato, alvaro}@nacad.ufrj.br
http://www.nacad.ufrj.br

methodology is simply based on the choice of the best results after probing the several
possibilities more adequate to such platform. Similar ideas have been implemented
for dense matrix computations [20]. Considering a particular parallel platform, as
clusters (heterogeneous or not), the best data configuration choice can be different
from each other and thus, different data structures can be used together for the same
model. Concerning distributed parallel processing, the standard approach is to
partition data before performing data reordering on each processor. Data partition is
performed by the Metis library [21].

Based on the nodal renumbering algorithms and concepts proposed in [4], [22],
[23] and edge renumbering algorithms proposed in [17], algorithms for matrix-vector
product composed by 1, 3 and 4 degrees of freedom per node (hereafter, referred to as
dof), for symmetric and non-symmetric matrices, were implemented. The techniques
employed try to determine the most suitable data reordering according to the
computational system at hand, even without any prior knowledge about the processors
architecture. Among them, a sorting of edges, in increasing order by the edge first
node number (namely hereafter, reduced indirect addressing or reduced i/a), halves
the indirect addressing operations of the edge-based matrix-vector product algorithm
[22].

Additionally, data locality algorithms were used in association with special edge
groupings, which improve the edge-based matrix-vector product algorithm. This was
implemented for tetrahedra, grouped into 3 and 6 edges, named respectively
superedge3 and superedge6 for both incompressible fluid flow and geomechanics
problems [17]. For the latter, an edge-based interface element was implemented, with
special groupings named superedge4 and superedge9, comprising groups of 4 and 9
edges respectively [24].

Related to memory dependency, lists of edges are built where no pair of nodes in
the same edge list shares the same node. This arrangement is referred here as nodal
disjointing and is responsible for a significant lack of performance. A Reverse Cuthill
McKee (RCM) [25] algorithm in conjunction with edge and element sorting
according to node numbering are further employed to diminish the negative effect
provided by the nodal disjointing ordering.

The methodology developed is realized as a suite of routines built in Fortran90,
comprising the necessary tasks for both pre-solution and solution phases, for serial or
parallel platforms (shared, distributed or hybrid), named EdgePack. The remainder of
this work is organized as follows. In the next section, we revise the edge-based data
structures and the data reordering algorithms. In Section 3 we describe EdgePack in
detail. In Section 0, we show some numerical experiments exploring the main
characteristics of EdgePack. The paper ends with a summary of our conclusions and
remarks.

2 Edge-Based Structure and Data Reordering

Edge based finite element data structures have been introduced for explicit
computations of compressible flow in unstructured grid finite element and finite
volume computations [13], [14], [26]. It was observed in these works that residual

EdgePack: A parallel vertex and node reordering package for optimizing edge-based
computations in unstructured grids 3

computations with edge-based data structures were faster and required less memory
than standard element-based residual evaluations. Following these ideas, Coutinho et
al [15], Catabriga and Coutinho [16], Sydenstricker et al [24], Elias et al [18] derived
edge-based finite element implementations respectively for elasto-plasticity, the
SUPG finite element formulation with shock-capturing for inviscid compressible
flows, interface elements for modeling joints and faults and the SUPG/PSPG solution
of incompressible flows. Differently from the previous finite volume/finite element
implementations, all these works used the concept of algebraically disassembling the
finite element matrices to build the edge matrices introduced by Catabriga and
Coutinho [16]. This procedure makes the edge-operators construction independent of
the underlying finite element formulation. To illustrate this procedure, consider three
dimensional problems on unstructured meshes composed by tetrahedra. Thus, the
element matrices can be disassembled into their edge contributions as

1

m
e e

s
s=

= ∑A Τ .
(1)

where e
sT is the contribution of edge s to Ae and m is the number of edges per

element. The contributions of all elements sharing a given edge s is given by the
following matrix,

e
s s

s∈

=∑A Τ
E

 . (2)

where E is the set of all elements sharing a given edge s.
When working with iterative solvers, it is necessary to compute sparse matrix-

vector products. These matrix-vector products are responsible for a good share of the
overall computational effort. A straightforward way to implement the edge-by-edge,
similar to popular element-by-element matrix-vector product is

1

ne
l l

l=

=∑Ap A p .
(3)

where ne is the total number of local structures (edges or elements) in the mesh and pl
is the restriction of p to the edge or element degrees-of-freedom. As a prototype of
such procedure, the edge-based Laplacian loop algorithm (comprising 1 dof per node)
as proposed in [22], is:

4 {marcos, renato, alvaro}@nacad.ufrj.br
http://www.nacad.ufrj.br

Laplacian loop for a single edge sparse matrix-vector product

do edge = edge_begin, edge_end

eq_1 = lm(1,edge)

eq_2 = lm(2,edge)

ap = a(edge) * (u(eq_2) – u(eq_1))

p(eq_1) = p(eq_1) + ap

p(eq_2) = p(eq_2) + ap

end do

where array lm stores edge equation numbers, a stores the edge coefficient and u
stores the unknown values.

In order to achieve a good balance between memory accesses and floating point
operations (flops), reordering techniques are suggested in the literature such as
superedges [17], [27] and reduced indirect addressing edges [22]. The superedge
scheme reaches good balance of i/a and flops [15] without complex preprocessing
codes [17]. In this case, computer costs are just related to the new order of the edge
list, considering the edges agglomerated, in geometric a sense, for example, in
tetrahedral shape, swept by stride of 6 edges.

An alternative to reduce i/a is to convert an edge-based loop into a vertex-based
loop [4] in which the edges are arranged in such a way that the first node always has
the lower number and the first node number increases as the edge number increases
with stride one. This loop reuses vertex-based data items in most or all of the accesses
several times before discarding it. This approach increases flops but reduces i/a
operations, whereas the edge has to be processed twice. Table 1 shows a comparison
of computation parameters for the matrix-vector multiplication algorithm for reduced
i/a and superedge schemes, considering 3 dof and symmetric operators.

Table 1. Comparison of computational parameters for matrix-vector multiplication algorithm
for reduced i/a and superedges for 3 dofs

Group/Parameter flops i/a Flops/(i/a)
Simple Edge 36 18 2.0
Superedge6 268 36 7.4
Superedge3 130 27 4.8
Superedge9 436 54 8.1
Superedge4 190 36 5.3
Reduced i/a 39 9 4.3

The choice among all these different possibilities and data layouts, trying to
minimize indirect addressing and improve data locality is not easy. In the following
Section we introduce EdgePack, which contains heuristics to optimize these
parameters.

EdgePack: A parallel vertex and node reordering package for optimizing edge-based
computations in unstructured grids 5

3 EdgePack

EdgePack is a suite of routines built in Fortran90 to optimize computations on
unstructured grids. EdgePack is divided into two sets of routines: the first set is a
preprocessing phase and aims to reorder finite element meshes composed of
tetrahedra and prisms to improve the performance of iterative solvers for any number
of degrees of freedom per node. The main concern is to optimize data locality and
data reuse for serial or parallel shared or distributed memory computers. The second
set is composed of a series of optimized edge-based data routines for matrix-vector
products and element matrix disassembling into edges.

The main tasks performed by EdgePack during the preprocessing phase comprise
the edge connectivity assembly, based on building fast hash-tables, edge groupings
into superedges [17], [27], nodal and edge reordering into reduced indirect addressing
edge mode [4], [22], nodal reordering to minimize bandwidth based on the Reverse
Cuthill McKee (RCM) algorithm [25], nodal disjointing reordering for pipelined
processing providing data with no memory dependencies, edge reordering driven by
equation map and element reordering according to edge connectivity.

EdgePack runs either on serial or parallel distributed memory systems. Targeting
on parallel processing, the mesh partitioning is performed by the Metis library [21], in
weighted or non-weighted mode, and for all subdomains data reordering is
accomplished locally on each processor node. This methodology provides the
possibility of achieving the best data structure and reordering choice for each
processing node, as in the case of heterogeneous clusters. EdgePack probes timing
results for matrix-vector products based on equation map and element matrix
topology, taking into consideration the number of degrees of freedom per node and if
the matrix is symmetric or not, and chooses the data configuration from the best
matrix-vector product timing result. Based on this probe, it is possible to determine
which data structure will suit best on a given hardware and software configuration and
automatically decide which element, edge and node data structure and order fit best
on, without user concern or intervention. However, the user can set directly which
data structure to use without probing. EdgePack can be used as either a stand-alone
program or library.

Communication among processors is another issue treated by EdgePack. The
subdomain interfaces, inherent in distributed parallel processing, can either be done
by simply indexing shared nodes among subdomains – thus preserving local data
order – or by ordering shared nodes sequentially for optimizing communications
tasks.

For the processing phase, EdgePack provides optimized edge-by-edge matrix-
vector product routines for 1 up to 4 dof per node, for symmetric or non-symmetric
operators, which account for i/a and flops reduction, and data reuse strategy based on
data locality and agglomeration into registers. Besides data configuration paradigm,
EdgePack probes the matrix-vector product routines based on typical vector lengths
for chunkwise and nodal disjointed loops, alternative right hand side evaluation
(RHS) [22] and loop unrolling into edges. The matrix-vector product routines are
ready to run under serial and parallel (hybrid or not) mode and are set according to
pre-compiler directives.

6 {marcos, renato, alvaro}@nacad.ufrj.br
http://www.nacad.ufrj.br

The various data configurations and matrix-vector product modes available can be
set by a combination of 7 keywords as presented by Table 2. The first five keywords
are related to the preprocessing phase and the remaining ones set the matrix-vector
product algorithm type.

Table 2. Keywords for data and matrix-vector algorithm configuration

Keyword # Description Option
 1 Nodal Disjointing Yes / No
 2 Chunks Yes (List Length) / No
 2.1 List Length Starting from 64 up to 2048

and free (mandatory for
reduced 1 and 2)

 3 Node Order RCM / Reduced
 4 Edge Order Reduced (0/1/2) / Simple or

Superedge
 4.1 Prescribed Edge Yes / No (for simple and

superedge only)
 4.2 Superedge Omission -Sx (for superedge only,

x = 3, 4, 6 and 9)
 5 Shared Nodes

(for distributed processing)
Indexed / Sequential

 6 Alternative RHS Yes / No
 7 Loop Unrolling Yes (2/3/6) / No

The following section presents examples of EdgePack features.

4 Preliminary Results

This section presents some preliminary results from three models comprising
geomechanics and incompressible fluid flow. The first two are models of true
sedimentary basins with faults. The last model comprises the transient incompressible
fluid flow around a cylinder. The first model illustrates the main data orderings
available in EdgePack, for serial processing, through edge connectivity graphs,
characterizing data locality for each case. In the second model we show time probing
results for some data ordering available on EdgePack for serial mode, searching the
fastest ones for each case among the various data configuration possibilities and
related results. The third model presents edge connectivity graphs, timing results for
the best data configuration selection after probing, besides some validation results for
parallel processing.

EdgePack: A parallel vertex and node reordering package for optimizing edge-based
computations in unstructured grids 7

4.1 Sedimentary Basin – Model 1

This model represents a sedimentary basin the geometry and material of which
correspond to a region in the Colombia, South America. A fault is present in the
model, crossing it completely. The model surface is approximately 80 × 80 km2 and
23 km deep, and comprising 141,766 tetrahedra, 5,133 interface elements and 28,897
nodes. Fig. 1 presents the surface of the sedimentary basin mesh – model 1.

Fig. 1. Surface mesh of sedimentary basin - model 1

The model will be employed to illustrate the main data orderings available in
EdgePack. Fig. 2 presents the main edge and vertex ordering generated by EdgePack
for this model by a representation of its edge connectivity, where the first edge node
is in black line and the second one in gray line. The edge sequence is highlighted
through lines connecting the nodes. In this figure, the original vertex and edge
orderings are presented in panel (a); the reduced edge order is presented in panel (b)
in which the monotonic order of the first nodes can be clearly noted by the ramps.
Panel (c) presents the simpleedge order and panel (d), the superedge one. It can be
noted on these orderings the good data locality configuration. In panel (d), the five
ramps represent the superedges employed as superedge6 (S6), superedge3 (S3),
superedge9 (S9), superedge4 (S4) and simpleedge respectively.

8 {marcos, renato, alvaro}@nacad.ufrj.br
http://www.nacad.ufrj.br

0

5

10

15

20

25

30

0 40 80 120 160 200
Edge (x1000)

N
od

e
i,

j (
x1

00
0)

(a)

0

5

10

15

20

25

30

0 50 100 150 200
Edge (x1000)

N
od

es
 i,

 j
(x

10
00

)

(b)

0

5

10

15

20

25

30

0 40 80 120 160 200
Edge (x1000)

N
od

e
i,

j (
x1

00
0)

(c)

0

5

10

15

20

25

30

0 40 80 120 160 200
Edge (x1000)

N
od

e
i,

j (
x1

00
0)

(d)

Fig. 2. Edge connectivity orders generated by EdgePack for sedimentary basin – model 1

4.2 Sedimentary Basin – Model 2

This model represents a portion of a sedimentary basin the geometry and material of
which correspond to a region in the northeast of Brazil, South America. The model is
constituted of four blocks separated by three geological faults. The model is 9.1 × 6
km2 and 1.5 km deep, comprising 371,244 nodes, 2,064,940 linear tetrahedral
elements and 17,317 interface elements, as shown in Fig. 5. The boundary conditions
impose compression along the major dimension, normal to faults and normal
displacements nullified over the entire surface, besides overburden from upper layers
and self-weight. Analysis comprises 3 dofs per node as displacements.

EdgePack: A parallel vertex and node reordering package for optimizing edge-based
computations in unstructured grids 9

Fig. 3. Surface mesh of sedimentary basin - model 2

Fig. 4 presents the most important time probing results out of 208 jobs on an
Itanium 2 platform, under pipelined serial mode. Fig. 4(a) presents some time probing
results where the clear benefit over reduced schemes for this case is represented by a
45% gain in time. The labels correspondence is presented by Table 3 in which results
were obtained for non-unrolled matrix-vector loops.

Table 3. Data configuration for results presented by Fig. 4(a)

Label Nodal Order Chunk Length (min/max)
Simpleedge RCM 64/2048
Superedge RCM 64/ 512
Reduced 0 Reduced 1/ 64
Reduced 1 Reduced 64/ 64
Reduced 2 Reduced 64/ 128

Fig. 4(b) presents the percentage of occurrences of nodal order configuration for
all 208 jobs. The percentage is referred for each legend individually. It is clear the
advantage of RCM nodal ordering over reduced one for this combination of model
and platform. However, only 4% of all cases with nodes ordered by RCM attain the
best results.

For the reduced edge scheme, Fig. 4(c) presents the percentage of occurrences
related to each one individually. This picture shows the slight advantage of reduced 0
and 1 scheme over reduced 2, for this case. However, the distribution tends to be
uniform for three modes.

Fig. 4(d) pictures time probing results for nodes ordered by RCM and edges
arranged as simpleedges and superedges. In the latter, all superedges available were
used. The supremacy of simpleedge over superedge is clearly noticeable since
superedge only occurs in the third time scale. However, only 7% of simpleedge data
combinations appear as best results.

10 {marcos, renato, alvaro}@nacad.ufrj.br
http://www.nacad.ufrj.br

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Sim
ple

ed
ge

Sup
ere

dg
e

Red
uc

ed
_0

Red
uc

ed
_1

Red
uc

ed
_2

N
or

m
al

iz
ed

 C
PU

 T
im

e

(a)

19

2 3
8

39

11

28

1413 13
4

46

0,2 0,3 0,4 0,5 0,5 0,6 0,7 0,8 0,9 1,0
Normalized CPU Time

RCM
Reduced

(b)

25

25

11

25

4
9

15

10

13

25

13
13

11
17

74
11

25
11

15

12

0,2 0,3 0,4 0,5 0,5 0,6 0,7 0,8 0,9 1,0

Normalized CPU Time

Reduced 2
Reduced 1
Reduced 0

(c)

79

21

93

7

0,2 0,3 0,4 0,5 0,5 0,6 0,7 0,8 0,9 1,0

Normalized CPU Time

Super Edge
Simple Edge

(d)

Fig. 4. Timing results from probing of sedimentary basin – model 2

4.3 Incompressible Fluid Flow

The problem of a fluid flowing around a circular cylinder is considered as an
application of the EdgePack’s data improvements to incompressible fluid flow codes.
Time probing for this case was performed and the data configuration comprising edge
ordering by the simpleedge scheme, nodal ordering by RCM and chunk length of
4096 was chosen. For this problem an extension for transient flows of the edge-based
stabilized finite element implementation described in [18], is applied to solve the
three dimensional u-p fully coupled (4 dofs per node) problem arising from the
Navier-Stokes discretization. The computational domain following the dimensions
described in [28] and the mesh formed by 446,662 linear tetrahedra elements,
1,010,367 edges, and 81,991, comprising 174,008 equations.

The results, for a Reynolds 100, are assessed and compared with those presented
by [29] and [30] showing a good agreement for the time evolution of the drag and lift
forces on the cylinder surface as depicted in Fig. 5 for lift coefficient. Baranyi [30]

EdgePack: A parallel vertex and node reordering package for optimizing edge-based
computations in unstructured grids 11

reported a Strouhal number of St = 0.163 and drag and lift coefficients of 1.346 and
0.228 respectively for Reynolds 100 while Williamson [29] employing an
experimental correlation for the Strouhal-Reynolds pair, estimated the value of
0.1643. In this work we have found St = 0.16 and 1.313 and 0.225 for drag and lift
coefficients respectively which compares well with the results presented by those
authors.

A typical computation of this problem considering 10,000 fixed time steps, which
corresponds to 500 time units, spent 6.48 hours running in MPI mode with four
processors of a SGI Altix 350 system equipped with Intel Itanium-2 1.5 GHz
processors.

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

100 200 300 400 500 600 700 800 900 1000

Time (seconds)

Li
ft

C
oe

fic
ie

nt

Fig. 5. Lift coefficient for flow around a cylinder problem

Fig. 6. Snapshot of cylinder surface mesh and vorticity, showing the development of the von
Karmann vortex streets

Fig. 7 presents nodal edge connectivity for partition 2 out of 4 partitions. For this
figure, panel (a) presents the original node order for edges ordered in chunks for

12 {marcos, renato, alvaro}@nacad.ufrj.br
http://www.nacad.ufrj.br

pipeline processing and panel (b) corresponds to the combination of simpleedge order
in chunks for pipelined processing with nodes renumbered by RCM. Computations
with the node and edge order in panel (b) are twice as fast as those in panel (a).

0

10

20

30

40

50

60

70

0 100 200 300 400 500
Edge (x1000)

N
od

es
 i,

 j
(x

10
00

)

(a)

0

10

20

30

40

50

60

70

0 100 200 300 400 500
Edge (x1000)

N
od

es
 i,

 j
(x

10
00

)

(b)

Fig. 7. Nodal edge connectivity of simpleedge for partition 2

5 Conclusions and Incoming Work

The results presented attest to the versatility of EdgePack in choosing data
configuration according to best time results. This versatility can be derived from the
need of determining which data configuration produces the best time performance
among hundreds of possibilities besides computational platform effects.

The model presented in Section 4.1 demonstrated the main data configuration
possibilities and its choice range. The mesh partitioning was also exploited for
distributed parallel processing. The good effect over data locality was clearly shown
by nodal edge connectivity graphs.

An example of time probing for a serial run was done in 4.2, where performance
results were undetermined a priori and probing demonstrated that a wrong choice
could represent about 45% loss in time processing. The presented graphs glimpsed the
various possibilities and their unexpected results strengthening the EdgePack
flexibility in setting data configuration without user intervention.

Section 4.3 presented an example of distributed parallel processing over partitions
locally ordered by EdgePack. In this example, data was prepared to run in hybrid
mode, comprising data distribution, memory dependency and good data locality.

As next step in EdgePack development, the work goes towards distributed parallel
processing in heterogeneous clusters and grids, where in each node EdgePack can
determine different data configuration, to set the best performance individually
providing the coexistence of different data structures during same analysis and
exploiting the most adequate data configuration for each processor.

EdgePack: A parallel vertex and node reordering package for optimizing edge-based
computations in unstructured grids 13

References

1. Burgess, D. A. and Giles, M. B.: Renumbering unstructured grids to improve the
performance of codes on hierarchical memory machines, Advances in Engineering Software
28 (1997) 189-201

2. Carey, G. F., Swift, S. and McLey, R. T.: Maximizing sparse matrix-vector product
performance on RISC based MIMD computers. Journal of Parallel and Distributed
Computing, v.37, p.146-158, 1996

3. Douglas, C. C, Hu, J., Kowarschik, M., Rude, U. and Weiss, C.: Cache Optimization for
Structured and Unstructured Grid Multigrid. Electronic Transactions on Numerical
Analysis, v.10, p.21-40, 2000

4. Gropp, W. D., Kaushik, D. K., Keyes, D. E. and Smith, B. F.: Performance Modeling and
Tuning of an Unstructured Mesh CFD Application, Proceedings of SC 2000, IEEE
Computer Society, 2000, Dallas, Texas, United States, Article No. 34, ISBN:0-7803-9802-5

5. Löhner, R.: Renumbering Strategies for unstructured-grid solvers operating on shared-
memory, cache-based parallel machines, Computer Methods in Applied Mechanics and
Engineering 163 (1998) 95-109

6. Oliker, L., Canning, A., Carter, J., Shalf, J. and Skinner, D.: Evaluation of cache-based
superscalar and cacheless vector architectures for scientific computations, Proceedings of
the 18th Annual International Conference on Supercomputing, Malo, France, 2004, ISBN:1-
58113-839-3

7. Oliker, L., Li, X., Heber G. and Biswas, R.: Parallel Conjugate Gradient: Effects of
Ordering Strategies, Programming Paradigms, and Architectural Platforms, IEEE
Transactions on Parallel and Distributed Systems, 11(9):931-940, 2000

8. Oliker, L., Li, X., Heber, G. and Biswas, R.: Ordering Unstructured Meshes for Sparse
Matrix Computations on Leading Parallel Systems, Lecture Notes In Computer Science,
Vol. 1800, pp. 497-503, 2000

9. Oliker, L., Li, X., Husbands, P. and Biswas, R.: Effects of Ordering Strategies and
Programming Paradigms on Sparse Matrix Computations, SIAM Review, Vol. 44, No. 3, pp
373-393, 2002

10. Pinar, A. and Heath, M. T.: Improving Performance of Sparse Matrix-Vector
Multiplication, Conference on High Performance Networking and Computing, Proceedings
of the 1999 ACM/IEEE Conference on Supercomputing (CDROM), Portland, Oregon,
United States, Article No. 30, 1999, ISBN:1-58113-091-0

11. Ribeiro, F. L. B and Coutinho, A. L. G. A.: Comparison between element, edge and
compressed storage schemes for iterative solutions in finite element analyses. International
Journal for Numerical Methods in Engineering, Volume 63(4): 569-588, 2005

12. Vuduc, R., Demmel, J. W., Yelick, K. A., Kamil, S., Nishtala, R., and Lee, B.: Performance
Optimizations and Bounds for Sparse Matrix-Vector Multiply. Conference on High
Performance Networking and Computing, Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, Baltimore, Maryland, Pages: 1 – 35, 2002

13. Peraire J, Peiro J, Morgan K, 1993. Multigrid solution of the 3d-compressible Euler
equations on unstructured grids. Int. J. Num. Meth. Engrg.. 36(6): 1029-1044

14. Luo H, Baum JD, Löhner R, 1994. Edge-based finite element scheme for the Euler
equations, AIAA Journal, 32(6):1183-1190

15. Coutinho ALGA, Martins MAD, Alves JLD, Landau L and Moraes A, 2001. Edge-based
finite element techniques for non-linear solid mechanics problems. Int. J. for Num. Meth. in
Engrg, 50(9):2053-2068

16. Catabriga L and Coutinho ALGA. , 2002. Implicit SUPG solution of Euler equations using
edge-based data structures. Computer Methods in Applied Mechanics and Engineering,
32:3477-3490

14 {marcos, renato, alvaro}@nacad.ufrj.br
http://www.nacad.ufrj.br

17. Martins, MAD., Alves, JL., Coutinho, ALGA.: Parallel Edged-Based Finite Techniques for
Nonlinear Solid Mechanics. Lecture Notes on Computer Science, Vol. 1981, Springer-
Verlag, Berlin Heidelberg (2001), pp 506-518

18. Elias R N, Martins MAD, Coutinho ALGA, Parallel Edge-Based Inexact Newton Solution
of Steady Incompressible 3D Navier-Stokes Equations, J.C. Cunha and P.D. Medeiros
(Eds.): Euro-Par 2005, LNCS 3648, pp. 1237–1245, 2005

19. Coutinho ALGA, Martins MAD, Sydenstricker R and Elias RN. Performance comparison
of data reordering algorithms for sparse matrix-vector multiplication in edge-based
unstructured grid computations, International Journal for Numerical Methods in
Engineering, Chichester, UK, v. 66, n. 3, p. 431–460, 2006

20. Whaley, RC, Petitet, A, Dongarra, J, Automated Empirical Optimizations of Software and
the ATLAS Project, Parallel Computing 27(1–2):3–25, 2001

21. Karypis G. and Kumar V., Metis 4.0: Unstructured Graph Partitioning and Sparse Matrix
Ordering System. Technical report, Department of Computer Science, University of
Minnesota, Minneapolis, (1998). http://www.users.cs.umn.edu/~karypis/metis

22. Löhner, R., Galle, M.: Minimization of indirect addressing for edge-based field solvers,
Communications in Numerical Methods in Engineering, 18 (2002) 335-343

23. Löhner, R.: Some useful renumbering strategies for unstructured grids, International
Journal for Numerical Methods in Engineering, Vol. 36, (1993) 3259-3270

24. Sydenstricker, R.M., Martins, M.A.D., Coutinho, A. L. G. A., Alves, J.L.D.: Edge-Based
Interface Elements for Solution of Three-Dimensional Geomechanical Problems. Lecture
Notes in Computer Science, v.2565, p.53 - 64, 2003

25. Cuthill, E. and McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In Proc.
ACM Nat. Conf., pp 157-172, 1969

26. Barth, T. J., “Numerical Aspects of Computing Viscous High Reynolds Number Flows on
Unstructured Meshes”, AIAA, 29th Aerospace Sciences Meeting, January 7-10, AIAA 91-
0721, Reno, Nevada, 1991

27. Löhner, R.: Edges, Stars, Superedges and Chains; Comp. Meth. Appl. Mech. Eng. 111,
255-263 (1994)

28. Kalro V. and Tezduyar T.E., Parallel 3D Computation of Unsteady Flows around Circular
Cylinders, Parallel Computing 23 (1997) 1235-1248

29. Williamson, CHK, Defining a Universal and Continuous Strouhal-Reynolds Number
Relationship for the Laminar Vortex Shedding of a Circular Cylinder, Phys Fluids 31 (1988)
2742-2744

30. Baranyi, L, Computation of Unsteady Momentum and Heat Transfer from a Fixed Circular
Cylinder in Laminar Flow, Journal of Computational and Applied Mechanics, vol 4, no. 1,
(2003) pp. 13-25

