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Abstract. A new and simple methodology is proposed to choose the best data 
layout for codes using iterative solvers in unstructured grid problems. This 
methodology is realized as a suite of routines named EdgePack, acting during 
pre-solution and solution phases, based on data locality optimization techniques 
and variations of the matrix-vector product algorithm. Results have been 
demonstrating the great flexibility and simplicity of this methodology, which is 
suitable for distributed memory platforms in which different data configurations 
can coexist. 

1 Introduction 

The performance optimization of codes based on iterative solvers for unstructured 
grids based problems has the matrix-vector product algorithm as a key issue. It is well 
known that data reordering techniques comprise an effective solution for good 
performance results during matrix-vector product computations, due to data locality 
optimizations [1]-[12]. Despite these techniques, overall performance can be further 
increased by the migration from element based to edge based data structure, as has 
been seen in the last decade [11], [13]-[18]. This data structure is quite suitable for 
reordering manipulations, strengthening even more the overall performance [19]. 

The combination of data reordering techniques with edge-based data structures 
generates lots of possibilities which can perhaps be the best performance solution for 
one or another hardware and software platform [19]. The code performance depends 
on many factors namely, computational architecture, compiler options, data 
configuration, number of degrees of freedom per node (algorithm complexity) and 
algorithm structure itself. According to previous results [19], there is no ultimate data 
combination known prior to the processing phase unless a probe is performed, since 
the many combinations possible may produce unexpected results. 

This work presents a methodology to determine which data combination for a 
given computer platform is the best one in terms of processing time. This 
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methodology is simply based on the choice of the best results after probing the several 
possibilities more adequate to such platform. Similar ideas have been implemented 
for dense matrix computations [20]. Considering a particular parallel platform, as 
clusters (heterogeneous or not), the best data configuration choice can be different 
from each other and thus, different data structures can be used together for the same 
model. Concerning distributed parallel processing, the standard approach is to 
partition data before performing data reordering on each processor. Data partition is 
performed by the Metis library [21]. 

Based on the nodal renumbering algorithms and concepts proposed in [4], [22], 
[23] and edge renumbering algorithms proposed in [17], algorithms for matrix-vector 
product composed by 1, 3 and 4 degrees of freedom per node (hereafter, referred to as 
dof), for symmetric and non-symmetric matrices, were implemented. The techniques 
employed try to determine the most suitable data reordering according to the 
computational system at hand, even without any prior knowledge about the processors 
architecture. Among them, a sorting of edges, in increasing order by the edge first 
node number (namely hereafter, reduced indirect addressing or reduced i/a), halves 
the indirect addressing operations of the edge-based matrix-vector product algorithm 
[22]. 

Additionally, data locality algorithms were used in association with special edge 
groupings, which improve the edge-based matrix-vector product algorithm. This was 
implemented for tetrahedra, grouped into 3 and 6 edges, named respectively 
superedge3 and superedge6 for both incompressible fluid flow and geomechanics 
problems [17]. For the latter, an edge-based interface element was implemented, with 
special groupings named superedge4 and superedge9, comprising groups of 4 and 9 
edges respectively [24]. 

Related to memory dependency, lists of edges are built where no pair of nodes in 
the same edge list shares the same node. This arrangement is referred here as nodal 
disjointing and is responsible for a significant lack of performance. A Reverse Cuthill 
McKee (RCM) [25] algorithm in conjunction with edge and element sorting 
according to node numbering are further employed to diminish the negative effect 
provided by the nodal disjointing ordering. 

The methodology developed is realized as a suite of routines built in Fortran90, 
comprising the necessary tasks for both pre-solution and solution phases, for serial or 
parallel platforms (shared, distributed or hybrid), named EdgePack. The remainder of 
this work is organized as follows. In the next section, we revise the edge-based data 
structures and the data reordering algorithms. In Section 3 we describe EdgePack in 
detail. In Section 0, we show some numerical experiments exploring the main 
characteristics of EdgePack. The paper ends with a summary of our conclusions and 
remarks. 

2 Edge-Based Structure and Data Reordering 

Edge based finite element data structures have been introduced for explicit 
computations of compressible flow in unstructured grid finite element and finite 
volume computations [13], [14], [26]. It was observed in these works that residual 
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computations with edge-based data structures were faster and required less memory 
than standard element-based residual evaluations. Following these ideas, Coutinho et 
al [15], Catabriga and Coutinho [16], Sydenstricker et al [24], Elias et al [18] derived 
edge-based finite element implementations respectively for elasto-plasticity, the 
SUPG finite element formulation with shock-capturing for inviscid compressible 
flows, interface elements for modeling joints and faults and the SUPG/PSPG solution 
of incompressible flows. Differently from the previous finite volume/finite element 
implementations, all these works used the concept of algebraically disassembling the 
finite element matrices to build the edge matrices introduced by Catabriga and 
Coutinho [16]. This procedure makes the edge-operators construction independent of 
the underlying finite element formulation. To illustrate this procedure, consider three 
dimensional problems on unstructured meshes composed by tetrahedra. Thus, the 
element matrices can be disassembled into their edge contributions as 

1

m
e e

s
s=

= ∑A Τ  . 
(1) 

where e
sT  is the contribution of edge s to Ae and m is the number of edges per 

element. The contributions of all elements sharing a given edge s is given by the 
following matrix, 

e
s s

s∈

=∑A Τ
E

 . (2) 

where E is the set of all elements sharing a given edge s. 
When working with iterative solvers, it is necessary to compute sparse matrix-

vector products. These matrix-vector products are responsible for a good share of the 
overall computational effort. A straightforward way to implement the edge-by-edge, 
similar to popular element-by-element matrix-vector product is 

1

ne
l l

l=

=∑Ap A p  . 
(3) 

where ne is the total number of local structures (edges or elements) in the mesh and pl 
is the restriction of p to the edge or element degrees-of-freedom. As a prototype of 
such procedure, the edge-based Laplacian loop algorithm (comprising 1 dof per node) 
as proposed in [22], is: 



4      {marcos, renato, alvaro}@nacad.ufrj.br 
http://www.nacad.ufrj.br 

Laplacian loop for a single edge sparse matrix-vector product 

do edge = edge_begin, edge_end 

eq_1 = lm(1,edge) 

eq_2 = lm(2,edge) 

ap = a(edge) * (u(eq_2) – u(eq_1)) 

p(eq_1) = p(eq_1) + ap 

p(eq_2) = p(eq_2) + ap 

end do 

where array lm stores edge equation numbers, a stores the edge coefficient and u 
stores the unknown values. 

In order to achieve a good balance between memory accesses and floating point 
operations (flops), reordering techniques are suggested in the literature such as 
superedges [17], [27] and reduced indirect addressing edges [22]. The superedge 
scheme reaches good balance of i/a and flops [15] without complex preprocessing 
codes [17]. In this case, computer costs are just related to the new order of the edge 
list, considering the edges agglomerated, in geometric a sense, for example, in 
tetrahedral shape, swept by stride of 6 edges. 

An alternative to reduce i/a is to convert an edge-based loop into a vertex-based 
loop [4] in which the edges are arranged in such a way that the first node always has 
the lower number and the first node number increases as the edge number increases 
with stride one. This loop reuses vertex-based data items in most or all of the accesses 
several times before discarding it. This approach increases flops but reduces i/a 
operations, whereas the edge has to be processed twice. Table 1 shows a comparison 
of computation parameters for the matrix-vector multiplication algorithm for reduced 
i/a and superedge schemes, considering 3 dof and symmetric operators. 

Table 1. Comparison of computational parameters for matrix-vector multiplication algorithm 
for reduced i/a and superedges for 3 dofs 

Group/Parameter flops i/a Flops/(i/a) 
Simple Edge   36 18 2.0 
Superedge6 268 36 7.4 
Superedge3 130 27 4.8 
Superedge9 436 54 8.1 
Superedge4 190 36 5.3 
Reduced i/a   39   9 4.3 

The choice among all these different possibilities and data layouts, trying to 
minimize indirect addressing and improve data locality is not easy. In the following 
Section we introduce EdgePack, which contains heuristics to optimize these 
parameters. 
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3 EdgePack 

EdgePack is a suite of routines built in Fortran90 to optimize computations on 
unstructured grids. EdgePack is divided into two sets of routines: the first set is a 
preprocessing phase and aims to reorder finite element meshes composed of 
tetrahedra and prisms to improve the performance of iterative solvers for any number 
of degrees of freedom per node. The main concern is to optimize data locality and 
data reuse for serial or parallel shared or distributed memory computers. The second 
set is composed of a series of optimized edge-based data routines for matrix-vector 
products and element matrix disassembling into edges. 

The main tasks performed by EdgePack during the preprocessing phase comprise 
the edge connectivity assembly, based on building fast hash-tables, edge groupings 
into superedges [17], [27], nodal and edge reordering into reduced indirect addressing 
edge mode [4], [22], nodal reordering to minimize bandwidth based on the Reverse 
Cuthill McKee (RCM) algorithm [25], nodal disjointing reordering for pipelined 
processing providing data with no memory dependencies, edge reordering driven by 
equation map and element reordering according to edge connectivity. 

EdgePack runs either on serial or parallel distributed memory systems. Targeting 
on parallel processing, the mesh partitioning is performed by the Metis library [21], in 
weighted or non-weighted mode, and for all subdomains data reordering is 
accomplished locally on each processor node. This methodology provides the 
possibility of achieving the best data structure and reordering choice for each 
processing node, as in the case of heterogeneous clusters. EdgePack probes timing 
results for matrix-vector products based on equation map and element matrix 
topology, taking into consideration the number of degrees of freedom per node and if 
the matrix is symmetric or not, and chooses the data configuration from the best 
matrix-vector product timing result. Based on this probe, it is possible to determine 
which data structure will suit best on a given hardware and software configuration and 
automatically decide which element, edge and node data structure and order fit best 
on, without user concern or intervention. However, the user can set directly which 
data structure to use without probing. EdgePack can be used as either a stand-alone 
program or library. 

Communication among processors is another issue treated by EdgePack. The 
subdomain interfaces, inherent in distributed parallel processing, can either be done 
by simply indexing shared nodes among subdomains – thus preserving local data 
order – or by ordering shared nodes sequentially for optimizing communications 
tasks. 

For the processing phase, EdgePack provides optimized edge-by-edge matrix-
vector product routines for 1 up to 4 dof per node, for symmetric or non-symmetric 
operators, which account for i/a and flops reduction, and data reuse strategy based on 
data locality and agglomeration into registers. Besides data configuration paradigm, 
EdgePack probes the matrix-vector product routines based on typical vector lengths 
for chunkwise and nodal disjointed loops, alternative right hand side evaluation 
(RHS) [22] and loop unrolling into edges. The matrix-vector product routines are 
ready to run under serial and parallel (hybrid or not) mode and are set according to 
pre-compiler directives. 
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The various data configurations and matrix-vector product modes available can be 
set by a combination of 7 keywords as presented by Table 2. The first five keywords 
are related to the preprocessing phase and the remaining ones set the matrix-vector 
product algorithm type. 

Table 2. Keywords for data and matrix-vector algorithm configuration 

Keyword # Description Option 
  1 Nodal Disjointing Yes / No 
  2 Chunks Yes (List Length) / No 
  2.1 List Length Starting from 64 up to 2048 

and free (mandatory for 
reduced 1 and 2) 

  3 Node Order RCM / Reduced 
  4 Edge Order Reduced (0/1/2) / Simple or 

Superedge 
  4.1 Prescribed Edge Yes / No (for simple and 

superedge only) 
  4.2 Superedge Omission -Sx (for superedge only, 

x = 3, 4, 6 and 9) 
  5 Shared Nodes 

(for distributed processing) 
Indexed / Sequential 

  6 Alternative RHS Yes / No 
  7 Loop Unrolling Yes (2/3/6) / No 

The following section presents examples of EdgePack features. 

4 Preliminary Results 

This section presents some preliminary results from three models comprising 
geomechanics and incompressible fluid flow. The first two are models of true 
sedimentary basins with faults. The last model comprises the transient incompressible 
fluid flow around a cylinder. The first model illustrates the main data orderings 
available in EdgePack, for serial processing, through edge connectivity graphs, 
characterizing data locality for each case. In the second model we show time probing 
results for some data ordering available on EdgePack for serial mode, searching the 
fastest ones for each case among the various data configuration possibilities and 
related results. The third model presents edge connectivity graphs, timing results for 
the best data configuration selection after probing, besides some validation results for 
parallel processing. 
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4.1 Sedimentary Basin – Model 1 

This model represents a sedimentary basin the geometry and material of which 
correspond to a region in the Colombia, South America. A fault is present in the 
model, crossing it completely. The model surface is approximately 80 × 80 km2 and 
23 km deep, and comprising 141,766 tetrahedra, 5,133 interface elements and 28,897 
nodes. Fig. 1 presents the surface of the sedimentary basin mesh – model 1. 

 
Fig. 1. Surface mesh of sedimentary basin - model 1 

The model will be employed to illustrate the main data orderings available in 
EdgePack. Fig. 2 presents the main edge and vertex ordering generated by EdgePack 
for this model by a representation of its edge connectivity, where the first edge node 
is in black line and the second one in gray line. The edge sequence is highlighted 
through lines connecting the nodes. In this figure, the original vertex and edge 
orderings are presented in panel (a); the reduced edge order is presented in panel (b) 
in which the monotonic order of the first nodes can be clearly noted by the ramps. 
Panel (c) presents the simpleedge order and panel (d), the superedge one. It can be 
noted on these orderings the good data locality configuration. In panel (d), the five 
ramps represent the superedges employed as superedge6 (S6), superedge3 (S3), 
superedge9 (S9), superedge4 (S4) and simpleedge respectively. 
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Fig. 2. Edge connectivity orders generated by EdgePack for sedimentary basin – model 1 

4.2 Sedimentary Basin – Model 2 

This model represents a portion of a sedimentary basin the geometry and material of 
which correspond to a region in the northeast of Brazil, South America. The model is 
constituted of four blocks separated by three geological faults. The model is 9.1 × 6 
km2 and 1.5 km deep, comprising 371,244 nodes, 2,064,940 linear tetrahedral 
elements and 17,317 interface elements, as shown in Fig. 5.  The boundary conditions 
impose compression along the major dimension, normal to faults and normal 
displacements nullified over the entire surface, besides overburden from upper layers 
and self-weight. Analysis comprises 3 dofs per node as displacements. 
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Fig. 3. Surface mesh of sedimentary basin - model 2 

Fig. 4 presents the most important time probing results out of 208 jobs on an 
Itanium 2 platform, under pipelined serial mode. Fig. 4(a) presents some time probing 
results where the clear benefit over reduced schemes for this case is represented by a 
45% gain in time. The labels correspondence is presented by Table 3 in which results 
were obtained for non-unrolled matrix-vector loops. 

Table 3. Data configuration for results presented by Fig. 4(a) 

Label Nodal Order Chunk Length (min/max) 
Simpleedge RCM 64/2048 
Superedge RCM 64/  512 
Reduced 0 Reduced   1/    64 
Reduced 1 Reduced 64/    64 
Reduced 2 Reduced 64/  128 

Fig. 4(b) presents the percentage of occurrences of nodal order configuration for 
all 208 jobs. The percentage is referred for each legend individually. It is clear the 
advantage of RCM nodal ordering over reduced one for this combination of model 
and platform. However, only 4% of all cases with nodes ordered by RCM attain the 
best results. 

For the reduced edge scheme, Fig. 4(c) presents the percentage of occurrences 
related to each one individually. This picture shows the slight advantage of reduced 0 
and 1 scheme over reduced 2, for this case. However, the distribution tends to be 
uniform for three modes. 

Fig. 4(d) pictures time probing results for nodes ordered by RCM and edges 
arranged as simpleedges and superedges. In the latter, all superedges available were 
used. The supremacy of simpleedge over superedge is clearly noticeable since 
superedge only occurs in the third time scale. However, only 7% of simpleedge data 
combinations appear as best results. 
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Fig. 4. Timing results from probing of sedimentary basin – model 2 

4.3 Incompressible Fluid Flow 

The problem of a fluid flowing around a circular cylinder is considered as an 
application of the EdgePack’s data improvements to incompressible fluid flow codes. 
Time probing for this case was performed and the data configuration comprising edge 
ordering by the simpleedge scheme, nodal ordering by RCM and chunk length of 
4096 was chosen. For this problem an extension for transient flows of the edge-based 
stabilized finite element implementation described in [18], is applied to solve the 
three dimensional u-p fully coupled (4 dofs per node) problem arising from the 
Navier-Stokes discretization. The computational domain following the dimensions 
described in [28] and the mesh formed by 446,662 linear tetrahedra elements, 
1,010,367 edges, and 81,991, comprising 174,008 equations. 

The results, for a Reynolds 100, are assessed and compared with those presented 
by [29] and [30] showing a good agreement for the time evolution of the drag and lift 
forces on the cylinder surface as depicted in Fig. 5 for lift coefficient. Baranyi [30] 
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reported a Strouhal number of St = 0.163 and drag and lift coefficients of 1.346 and 
0.228 respectively for Reynolds 100 while Williamson [29] employing an 
experimental correlation for the Strouhal-Reynolds pair, estimated the value of 
0.1643. In this work we have found St = 0.16 and 1.313 and 0.225 for drag and lift 
coefficients respectively which compares well with the results presented by those 
authors. 

A typical computation of this problem considering 10,000 fixed time steps, which 
corresponds to 500 time units, spent 6.48 hours running in MPI mode with four 
processors of a SGI Altix 350 system equipped with Intel Itanium-2 1.5 GHz 
processors. 
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Fig. 5. Lift coefficient for flow around a cylinder problem 

 
Fig. 6. Snapshot of cylinder surface mesh and vorticity, showing the development of the von 
Karmann vortex streets 

Fig. 7 presents nodal edge connectivity for partition 2 out of 4 partitions. For this 
figure, panel (a) presents the original node order for edges ordered in chunks for 



12      {marcos, renato, alvaro}@nacad.ufrj.br 
http://www.nacad.ufrj.br 

pipeline processing and panel (b) corresponds to the combination of simpleedge order 
in chunks for pipelined processing with nodes renumbered by RCM. Computations 
with the node and edge order in panel (b) are twice as fast as those in panel (a). 
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Fig. 7. Nodal edge connectivity of simpleedge for partition 2 

5 Conclusions and Incoming Work 

The results presented attest to the versatility of EdgePack in choosing data 
configuration according to best time results. This versatility can be derived from the 
need of determining which data configuration produces the best time performance 
among hundreds of possibilities besides computational platform effects. 

The model presented in Section 4.1 demonstrated the main data configuration 
possibilities and its choice range. The mesh partitioning was also exploited for 
distributed parallel processing. The good effect over data locality was clearly shown 
by nodal edge connectivity graphs. 

An example of time probing for a serial run was done in 4.2, where performance 
results were undetermined a priori and probing demonstrated that a wrong choice 
could represent about 45% loss in time processing. The presented graphs glimpsed the 
various possibilities and their unexpected results strengthening the EdgePack 
flexibility in setting data configuration without user intervention. 

Section 4.3 presented an example of distributed parallel processing over partitions 
locally ordered by EdgePack. In this example, data was prepared to run in hybrid 
mode, comprising data distribution, memory dependency and good data locality. 

As next step in EdgePack development, the work goes towards distributed parallel 
processing in heterogeneous clusters and grids, where in each node EdgePack can 
determine different data configuration, to set the best performance individually 
providing the coexistence of different data structures during same analysis and 
exploiting the most adequate data configuration for each processor. 
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