
Aspect-Oriented Pluggable Support for Parallel 
Computing* 

João Luís Sobral1, Carlos A. Cunha2, Miguel P. Monteiro3 

1Departamento de Informática, Universidade do Minho, Braga, Portugal 
2Escola Superior de Tecnologia, Instituto Politécnico de Viseu, Portugal 

3Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco, Portugal 

Abstract. In this paper, we present an approach to develop parallel applications 
based on aspect oriented programming. We propose a collection of aspects to 
implement group communication mechanisms on parallel applications. In our 
approach, parallelisation code is developed by composing the collection into 
the application core functionality. The approach requires fewer changes to 
sequential applications to parallelise the core functionality than current 
alternatives and yields more modular code. We present the collection and show 
how the aspects can be used to develop efficient parallel applications. 

1   Introduction 

The wide use of multithreaded and multi-core architectures requires adequate tools to 
re-factor current applications to take advantage of this type of platforms. 
Unfortunately, parallelising compilers do not yet produce acceptable results, forcing 
programmers to rewrite the application to take advantage of this kind of systems. 
Moreover, parallelisation concerns become intertwined with application core 
functionality, increasing complexity and harming maintainability and evolvability. 

Tangling concurrency and parallelisation concerns with core functionality was 
identified as one of the main problems in parallel applications, increasing 
development complexity and decreasing code reuse [1, 2]. Similar negative 
phenomenon of code scattering and tangling was identified in traditional object 
oriented applications [3]. Aspect-Oriented Programming (AOP) was proposed to deal 
with crosscutting concerns in object-oriented systems, enabling programmers to focus 
on a single concern code that would otherwise be scattered, tangled with 
domain-specific logic. 

The use of AOP to implement parallel constructs provides the usual benefits of 
modularisation, namely improved code readability and better chance to attain 
reusability and (un)pluggability. It also increases the reuse potential of sequential 

                                                           
* This work is supported by PPC-VM (Portable Parallel Computing based on Virtual Machines) 
project POSI/CHS/47158/2002, funded by Portuguese FCT (POSI) and by European funds 
(FEDER). Miguel P. Monteiro is partially supported by FCT under project SOFTAS 
(POSI/EIA/60189/2004). 



code in parallel applications since aspects can be plugged into existing components 
without any source code modification. AOP techniques were successful in 
modularising distribution code [4, 5, 6], middleware features [7], and, in a lesser 
extent, in isolating parallel code in loop based parallel applications [2]. 

This paper presents a collection of aspect oriented abstractions for parallel 
computing, replacing traditional parallel computing constructs, presents several case 
studies that show how this collection can be used to develop parallel applications. 
Section 2 presents related work. Section 3 presents a brief AspectJ overview, an AOP 
extension to Java, which we use to implement the collection. Section 4 describes the 
collection and outlines its implementation. Section 5 presents several case studies and 
section 6 presents a performance evaluation. Section 7 concludes the paper. 

2   Related Work 

We classify related work in two main areas: concurrent object oriented languages 
(COOL) and approaches to separate parallel code from core functionality. 

COOLs received a lot of attention in the beginning of the nineties. ABCL [8] 
provides active objects to model concurrent activities. Each active object can be 
implemented by a process and inter-object communication can be performed by 
asynchronous or synchronous method invocation. Concurrent Aggregates [9] is a 
similar approach but supports groups of active objects than can work in a coordinated 
way and includes mechanisms to identify an object within a group. Recent COOLs 
are based on extensions to sequential object oriented languages [10, 11, 12]. These 
extensions introduce new language constructs to specify active objects and/or 
asynchronous method calls. ProActive [13] is an exception since it relies on an 
implicit wait by necessity mechanism, however, when a more fine grain control is 
required, an object body should be provided (to replace the default active object 
body) Object groups, similar to concurrent aggregates, have been recently introduced 
[14, 15]. With these approaches, introducing concurrency primitives and/ or object 
groups entails major modifications to source code, yielding tangled code, in which 
parallelisation concerns are intertwined with core functionality. 

One approach to separate core functionality from parallel code is based on 
skeletons where the parallelism structure is expressed through skeletons [16, 17, 18]. 
In generative patterns [19] these skeletons are generated and the programmer must fill 
the provided hooks with core functionality.  

AspectJ was used in [4, 5, 6] to compose distribution concerns into sequential 
applications. In [2] an attempt is made to move all parallelism related issues into a 
single aspect and [20] proposes a more fine grain decomposition. [21] presents an 
collection of reusable implementations of concurrency concerns. 

OpenMP [22] introduces concurrency concerns by means of annotations that can 
be ignored by the compiled in a sequential execution. 

Our approach differs from the aforementioned efforts in that we propose a 
collection of reusable aspects, implementing object groups, to achieve similar goals. 
We use concurrency constructs equivalent to traditional COOLs but we deploy all 
code related to parallelism within (un)pluggable aspects. Our approach differs from 



skeleton approaches since it uses a different way to compose core functionality and 
parallel code. Our approach requires less intrusive modifications to the core 
functionality to achieve a parallel application, yields code with a higher reuse 
potential and supports (un)plugability of parallelisation concerns. 

3   Overview of AspectJ 

AspectJ [23, 24] is an extension to Java that includes mechanisms for Aspect 
Oriented Programming. It supports two types of crosscutting concerns: static and 
dynamic.  

AOP allows the change of the application static structure in a crosscutting way. 
This includes member introduction and type-hierarchy modification. Inter-type 
declaration mechanism of AspectJ enables member introduction – i.e. fields, methods 
and constructors – type-hierarchy modification, by adding super-types and interfaces 
to specific classes. Fig. 1 presents a point class and Fig. 2 presents an Aspect that 
changes class Point, to implement interface Serializable, and to include a additional 
method, called migrate. 

 
public class Point { 
 private int x=0; 
 private int y=0; 
 
 public void moveX(int delta) {  x+=delta; } 
 public void moveY(int delta) {  y+=delta; } 
 
 public static void main(String[] args) { 
  Point p = new Point(); 
  p.moveX(10); 
  p.moveY(5); 
 } 
} 

Fig. 1. Sample point class 

import java.io.*; 
 
public aspect StaticIntroduction { 
 declare parents: Point implements Serializable; 
 public void Point.migrate(String node) {  System.out.println("Migrate to node" + node); 
} 

Fig. 2. Example of a static crosscutting aspect 

With dynamic crosscutting it is possible to capture various kinds of execution 
events, dubbed join points, namely object creation, method calls or accesses to 
instance fields. The construct specifying a set of interesting join points is a pointcut. 
Pointcut construct specifies a set of join points and collects context information from 
those join points. The general form of a named pointcut is: 

<visibility-modifier> pointcut <name>(ParameterList): <pointcut_expression>; 



The pointcut_expression is built by composing pointcut designators, using the 
operators &&, ||, and !. AspectJ pointcut designators (PDs) identify a set of join 
points, by filtering a subset of all join points in the program. PDs matching are three-
fold: based on join point kind, based on scope and based on join point context. More 
detailed information about pointcut designators can be found in [23]. 

Dynamic crosscutting also enables composing behaviour before, after or instead of 
each of the captured join points using the advice construct.  

Advices have the following syntax:  
 [before | after | <Type> around] (<ParameterList>): <pointcut_expression>  
  {…  // added behaviour } 

The before advice adds the specified behaviour before the execution point 
associated to the join points quantified by pointcut_expression. around advices 
substitute the execution points original code by the added code - is capable of 
executing the original join point through the proceed construct - and after adds the 
new code to the end of the execution point. pointcut_expression involves an pointcut-
like expression, which can involve a pointcut name and parameters. Objects and 
values specific to the context of the captured join points can be obtained through this, 
target and args constructs. Fig. 3 shows a typical example of a logging aspect, 
applied to Point class. In this example, on every call to methods moveX or moveY a 
message is printed on the screen. In this case the wildcard is used to specify a pattern 
for the call’s signature to intercept. 

 
public aspect Logging { 
 void around(Point obj, int disp) : call(void Point.move*(int)) && target(obj) && args(disp) { 
  System.out.println("Move called: target object = " + obj + " Displacement " + disp); 
  proceed(obj,disp);   // proceed the original call 
 } 
} 

Fig. 3. Example of a dynamic crosscutting aspect 

Modularisation of crosscutting concerns is an achievement that would lead to code 
reusability. Though it is a necessary condition, it is not a sufficient condition, as only 
the non case-specific code is reusable. Essential parts of the aspect’s behaviour are 
the same in different join points, whereby other parts vary from join point to join 
point. Reuse of crosscutting concerns requires the capture of reusable code to abstract 
aspects, in order to be reused by concrete aspects. Concrete aspects contain the 
variabilities tailored to a case-specific code base that defines the case-specific join 
points to be captured in the logic declared by the abstract aspect. Abstract aspects rely 
on abstract pointcuts and/or marker interfaces. In both cases, the abstract aspect only 
refers to abstract pointcut(s) or to the interface(s) and is therefore reusable. Each 
concrete implementation entails creating a concrete sub-aspect that concretises 
inherited pointcuts by specifying the set of join points specific to a particular system, 
and by making case-specific types implement the marker interfaces. In addition, 
aspects can contain their own state and behaviour. 

An aspect usually localises code related to a single crosscutting concern. A process 
called weaving enables execution of aspect code in multiple non-contiguous points in 
the system. Weaving process composes aspect code with multiple classes at compile 



time. As an example, the behaviour specified by the around advice in Fig. 3 will be 
composed in all base classes that call moveX or moveY methods. 

3   Aspect Oriented Collection for Parallel Computing 

Our aspect-oriented collection (Table 1) is based on three programming abstractions: 
separable/migrable objects, asynchronous method calls and object aggregates. 
Implementing these abstractions by means of aspects makes it possible to transform 
application core functionality (e.g., sequential, domain-specific, object oriented code) 
into a parallel application. However, the base code should be amenable for 
parallelisation, i.e., the amount of parallelism that can be introduced by our aspect 
collection is limited by application dependencies. Additionally, the composition of 
our collection with the core functionality requires a set of suitable join points, 
otherwise the source code must be refactored to expose these join points. 

 
Abstraction Scope  Description  
Separate Class Separate object - can be placed in any node 
Migrable Class Migrable object - can migrate among nodes 
Grid1D, Grid2D Class Object aggregate in a 1 or 2d GRID 
Broadcast/scatter Aggregate Broadcast/scatter method among members 
Reduction/gather Aggregate Reduce/gather method among members 
Redirection  Aggregate Redirect method call to one member (round-robin) 
DRedirection Aggregate Redirect call to one member (demand-driven) 
Barrier Aggregate Barrier among aggregate members 
OneWay Method Spawns a new thread to execute the method 
Future Method Spawns a new thread and returns a future 
Synchronised Method Implements object-based mutual exclusion 

Table 1. Aspect oriented collection of abstractions for parallel computing 

Separable objects are objects that can be placed remote nodes, selected by the run-
time system. Migrable objects are similar, but they can migrate to a different node 
after their creation. These two abstractions are specified through the separable and 
migrable interfaces using the declare parents AspectJ construct (see section 3). 

Asynchronous method calls introduce parallel processing between a client and a 
server. The client can proceed while the server executes a requested method. 
Asynchronous calls can be OneWay and Future. One-way calls are used when no 
return value is required. Fig. 4 shows the synopsis for the use of one-way calls. 

 
public aspect specificOneWay extends OnewayProtocol { 
 protected pointcut onewayMethodExecution(Object servant) : <pointcut definition>; 
 protected pointcut join() : <pointcut definition>; 
} 

Fig. 4. One-way introduction 

Pointcut onewayMethodExecution specifies the join points associated to invocation 
of methods that run into a new parallel task. Pointcut join can optionally be used to 



specify join points where the main thread blocks, waiting for the termination of the 
spawned tasks. 

Future calls are used for asynchronous calls that require a return value. In typical 
situations, a variable stores the result of a given method call, which is used in a later 
phase. Instead of blocking in the method call, the client blocks when the variable that 
stores the result is actually accessed. Fig. 5 shows the synopsis for the 
implementation of futures. 

 
public aspect aspectname extends FutureProtocol { 
 protected pointcut futureMethodExecution(Object servant): <pointcut definition>; 
 protected pointcut useOfFuture(Object servant): <pointcut definition>; 
} 

Fig. 5. Future introduction 

Pointcut futureMethodExecution indicates the asynchronous method calls and 
pointcut useOfFuture defines the join points where the result of the call is needed. 
The client blocks on join points captured by useOfFuture, in case the methods 
defined in futureCall have not completed execution. 

A richer set of primitives for synchronisation is also available [21], namely Java’s 
synchronised methods, barriers and waiting guards, but their description is out of 
scope of this paper. 

Object aggregates are used to transparently represent a set of object instances in 
the core functionality. An object aggregate deploys one or several object instances in 
each node (usually one per physical processor/core) and provides additional 
constructs to access the members of the aggregate. There are two main interfaces to 
support aggregates: Grid1D and Grid2D; they differ only on the way the internal 
members of the aggregate are referenced. For instance, a Grid1D aggregate provides 
two calls: getAggregateElems() and getAggregatetElemId(). Grid1D and Grid2D 
aggregates are specified in a way similar to separate objects (i.e., using declare 
parents). 

Calls to the original object instance (i.e., calls in the core functionality) are 
replaced by calls to the first object in the aggregate (called the aggregate 
representative), but these calls can also be broadcasted, scattered and reduced among 
member of the aggregate. Broadcasted calls are executed in parallel by all aggregate 
members, using the same parameters from as core functionality call. Such call returns 
when all broadcasted calls complete. Fig. 6 shows the synopsis for the use of 
broadcasted calls. Pointcut broadcast specifies method calls broadcasted to all 
aggregate members. 

 
 protected pointcut broadcastMethodExecution(Object servant) : <pointcut definition>; 

Fig. 6. Broadcasted calls introduction 

Scattered calls (Fig. 7) are similar to broadcasted calls but they provide a 
mechanism to specify a different argument for each aggregate member. This is 
specified by implementing the abstract method scatter which returns a vector of 
several values, one for each call on an aggregate member. 



 
 protected Vector scatter(Object callParameter) {  
  …  
 } 
 protected pointcut scatterMethodExecution(Object serv, Object arg) : <pointcut definition>; 

Fig. 7. Scattered calls introduction 

Reduced calls are also similar to broadcasted calls, but they provide a mechanism 
to combine return values of each aggregate member call. This type of calls is intended 
to be used instead of broadcasted call, when the call returns a value. In this case a 
reduction function specifies how to combine the return values of each aggregate 
member call (Fig. 8). 

 
 protected Object reduce(Vector returnValues) { 
  …  
 } 
 protected pointcut reduceMethodExecution(Object serv, Object arg) : <pointcut definition>; 

Fig. 8. Reduced calls introduction 

An additional function (scatter/reduce) performs a combination of scatter and 
reduce calls. Other aggregate functions can redirect a call to one aggregate member in 
a round-robin fashion (redirectCall) or in a demand driven scheme (dredirectCall). 

Broadcasted, scattered and reduced calls are valid just for object aggregates (e.g., 
method calls on objects that implement interfaces Grid1D or Grid2D). 

Fig. 9 shows a simple application that illustrates the use of this collection of 
aspects. The object Filter in the core functionality (at the left) is transformed into an 
aggregate and calls to filter are broadcasted, in parallel, to all aggregate members. 
Before filter method execution (before() execution(* Filter.filter) statement), each 
aggregate member displays its Id. 

 
Core functionality Parallelisation code 
 
public class Filter { 
   void filter() { 
        … 
   } 
… 
Filter f = new Filter(); 
 
f.filter(); 
 

 
declare parents: Filter implements Grid1D; 
 
 
before() : execution(* Filter.filter(..)) && … {  
    System.out.println(“Called on ” + getAggregateElemId() ); 
} 
 
pointcut broadcastMethodExecution(..) : call(* Filter.filter(..));  
 

Fig. 9. Simple application example  



4   Case studies 

This section presents two representative case studies that illustrate the use of the 
aspect collection to develop modular parallel applications. The case studies are from 
the parallel Java Grande Forum Benchmark (JGF) [25]. This benchmark includes 
several sequential scientific codes and parallel versions of the same applications, 
using mpiJava (a bind of MPI to Java). Their parallel implementations introduce 
modifications to the sequential code, intermingling domain specific code with MPI 
primitives to realise parallel execution. These tangled implementations make it 
difficult to understand both the parallelisation strategy and the domain specific code. 
Our approach entails introducing as fewer modifications as possible to domain 
scientific code, introducing parallelisation logic through non-invasive composition of 
aspects from the collection. This approach makes the implementation of the 
parallelisation strategy more modular and explicit. 

The first case study is a Successive Over-Relation method (SOR), an iterative 
algorithm to solve Partial Differential Equations (PDEs). This application is 
parallelised using a heartbeat scheme, where each parallel task processes part of the 
original matrix, exchanging information with neighbour elements after each iteration. 

The second application is a ray-tracer that renders a scene with 64 spheres. It is 
parallelised using a farming strategy, where each worker renders a set of image lines. 

4.1   Successive Over-Relation 

The SOR method is used to iteratively solve a system of PDE equations. The 
method successively calculates each new matrix element using its neighbour points. 
A sequential Java program of the JGF method is outlined in Fig. 10. This code 
iterates a number of pre-defined iterations, given by num_iterations, over matrix G. 

In this particular case, the sequential version is not the best version to execute in 
parallel due the dependencies among calculations. To overcome this limitation the 
SORrun implementation was changed to use the Red-Black parallel version, 
becoming more amenable for parallel execution. This strategy was also followed in 
the JGF parallel benchmark to derive the parallel version of the application. 

 
 public class SOR { 
  … 
  public static final void SORrun(double omega, double G[][], int num_iterations) { 
   … 
   for (int p=0; p<num_iterations; p++) { 
    … // performs one iteration 
   } 
   … 
  } 
 } 

Fig. 10. JGF SOR sequential code  



The sequential code from the JGF does not provide adequate join points to 
compose with our collection. Our first step is to use the static crosscutting of AspectJ 
to make this code suitable for composition with parallelisation code (Fig. 11). This 
code introduces two new methods into the SOR class: the init method (lines 04-05) 
initialises the SOR matrix and the iterate method (lines 07-08) performs one iteration. 
In lines 10-17 the original SORrun call is redefined to call these methods. An 
alternative would be to refactor all the JGF SOR sequential code to use SOR 
instances, init and iterate calls. 

 
01 double SOR.MyG[][], 
02 static int SOR.omega; 
03  
04 // initialize matrix 
05 public void SOR.init(double G[][]) { MyG = G; } 
06  
07 // performs one iteration 
08 public void SOR.iterate() { SORrun(omega, MyG, 1); } 
09  
10 // redirects SORrun calls to use SOR instances, init call and iterate calls 
11 void around(double omega, double G[][], int iterations) call(* SOR.SORrun(..)) && … { 
12  SOR.omega = omega; 
13  SOR so = new SOR(); 
14  so.init(G); 
15  for(int i=0; i<iterations; i++)  
16   so.iterate(); 
17 } 

Fig. 11. SOR method core functionality 

SOR core functionality can be parallelised through a typical heartbeat strategy. In 
this strategy, each parallel task iterates over a matrix subset, periodically exchanging 
boundary information with its neighbours. The parallelisation aspect has four parts: i) 
creates several SOR objects; ii) assigns a subset of the matrix to each SOR object; iii) 
performs a call to the iterate method on all the objects in the set and iv) exchanges 
matrix lines among objects after each iteration. 

SS

S
S

SSS C 

Client object 

Server object

Server creation

C

S

 
Fig. 12. Transparent creation of several SOR objects 

The first step creates an aggregate of SOR objects instead a single object (Fig. 12). 
This is done by specifying that the SOR class implements the Grid1D interface (line 
01 in Fig. 13). Our system intercepts the creation of SOR instances in the core 
functionality and creates one SOR object on each node/CPU. 

The second step distributes the G matrix among the aggregate, in a block fashion 
(Fig. 14). The code for this step intercepts the init method, splits the received matrix 
into blocks, using the provided scatter method (line 02 in Fig. 13) and calls the init 



method on each object in the set, sending a different block to each element using the 
scatter method (line 03 in Fig. 13). Code for matrix partition (scatter method in line 
02 in Fig. 13) is a bit tricky to implement since there are lines from the matrix that are 
replicated in several objects and the first and the last objects receive one line less than 
other objects. However, this code is also required in a traditional parallel application 
and, usually, it is tangled with the algorithm core functionality. 

 
13 SOR so = new SOR(); 
 
14 so.init(G); 
 
 
15 for(int i=0; i<iterations; i++)  
16  so.iterate(); 
 

01   declare parents: SOR implements Grid1D; 
 
02   Vector scatter(Object arg) { … } 
03   pointcut scatterMethodExecution(..) : 
 call (* SOR.init(..)) && ...; 
 
04   pointcut broadcastMethodExecution(..) : 
 call(* SOR.iterate(..)) && …; 
 
05   after() : execution(* SOR.iterate(..)) && … { … } 

Fig. 13. Parallelisation of the SOR application using our AOP collection 

 
Fig. 14. Matrix distribution among SOR objects 

Third, iterate method calls are executed by all SOR aggregate objects (Fig. 15). 
Code for this operation implements the broadcast pointcut (line 04 in Fig. 13). 

iterate

iterate

iterate

iterate

iterate

iterate

iterate

iterate

 
Fig. 15. Iteration distribution among SOR objects 

The last step exchanges matrix boundary lines among SOR objects, after an iterate 
method execution (Fig. 16 and line 05 in Fig. 13).  

Iterate
(after)
Iterate
(after)

 
Fig. 16. Boundary exchange among SOR objects 

Init (G)

Init (MyG)

Init (MyG)

Init (MyG)

Init (G)

Init (MyG)

Init (MyG)

Init (MyG)



4.2   RayTracer 

The JGF RayTrace renders an image of sixty spheres. A simplified version of the JGF 
sequential code is provided in Fig. 17. Method JGFinitialise initialises the scene to be 
rendered and method JGFapplication renders the scene. The class Interval allows the 
specification of a subset of the lines to be rendered. 

 
 public class JGFRayTracerBench extends RayTracer … { 
  … 
  public void JGFinitialise(){ 
   … 
   scene = createScene(); // create the objects to be rendered 
   setScene(scene);  // get lights, objects etc. from scene. 
   … 
  }  
 
  public void JGFapplication() {  
   … 
   // Set interval to be rendered to the whole picture  
   Interval interval = new Interval(0,width,height,0,height,1);  
 
   render(interval);  // Do the business! 
   … 
  } 
 } 

Fig. 17. JGF RayTracer sequential code  

The parallelisation aspect for this benchmark (Fig. 18) declares the class 
JGFRayTracerBench to implement the Grid1D interface (line 01). Calls to 
JGFinitialise are broadcasted to all aggregate members (line 03) and a call to the 
render method is scattered throughout aggregate elements. The scatter function 
builds a vector with the arguments for each call to one aggregate member. This is the 
same strategy followed in the JGF parallel version of this application. 

 
01 declare parents: RayTracerBench implements Grid1D; 
02  
03 pointcut broadcastMethodExecution(Object servant) : call(* *. JGFinitialise(..)) && … ; 
04    
05 Vector scatter(Object arg) { // calculates the parameters of each call 
06  Vector v = new Vector(); 
07  Interval in = (Interval) arg; 
08  … 
09  int range = (in.yto-in.yfrom)/workers;  // calculates the render range for each worker 
10  for(int i=0; i<workers; i++) { 
11   Interval inp = new Interval(0, in.height, in.height, range, range*(i+1), 1); 
12   v.add(inp); // saves the range of each worker 
13  } 
14  return(v); 
15 } 
16 
17 pointcut scatterMethodExecution(Object serv, Object arg) : call (* *.render(..)) && … ;  
18  

Fig. 18. JGF RayTracer parallelisation aspect  



5   Performance Results 

This section presents a performance evaluation of the proposed aspect collection. The 
results presented in this section were measured on an unloaded cluster of 8 dual-Xeon 
3.2 GHz machines, with hyper-threading enabled, connected through a 1 Gbit 
Ethernet. This cluster runs Rocks 4.0.0 and Sun Java JDK 1.5.0_3 in client mode. 
Presented execution times are median of five executions. Sequential execution times 
were measured on JGF versions where our parallelisation aspects were unplugged. 
Speed-up values are relative to these sequential execution times.  

Fig. 19 presents the execution time for a SOR (4000x4000 matrix) and a 
RayTracer (500x500 image) on a single machine. With two aggregate members the 
ray tracer presents better speed-ups, due to less communication required among tasks. 
Both of these applications can benefit from hyper-threading (i.e., using more than two 
aggregate members per node). In this case, higher gains in the SOR can be due to 
stronger dependencies among matrix elements calculations; leading to higher 
parallelism when the user performs an explicit parallelisation (e.g., provides more 
independent tasks, by beans of a higher number of aggregate members). 

 
Fig. 19. Execution time and speed-ups for a SOR (at left) a RayTracer (at right). 

Fig. 20 presents execution times on 8 cluster nodes. Also in this case the ray tracer 
presents better speed-ups, due to less communication among tasks. Note that using 
more than 16 aggregate members leads to a lesser performance improvement, since 
this additional gain is achieved by using multi-threading capabilities of these 
processors. 

0

20

40

60

80

1 2 3 4

Aggregate Members

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

0

1

2

3

4

Sp
ee

d-
U

p 
 

0

25

50

75

100

1 2 3 4

Aggregate Members

Ex
ec

ut
io

n 
Ti

m
e 

(s
)  

 

0

1

2

3

4

Sp
ee

d-
U

p 
 



 
Fig. 20. Execution times and speed-ups for a SOR (at left) and a RayTracer (at right) 

Execution times compared to equivalent Java versions (not shown), using MPP 
(message passing library built on top of Java nio) and Java Threads are within 5% 
execution time. This overhead is due to the way weaving is performed, which may 
result in code placed in new classes, instead of being in-lined in the original classes. 
Scatter and reduce functions can also be an additional source of overhead, since they 
can require additional data copies. 

6   Conclusion 

This paper presents a collection of aspects for parallel computing that requires fewer 
changes to parallelise sequential applications than current alternatives. In addition, it 
yields parallel object-oriented scientific applications that are more modular and easier 
to reuse. The collection was successfully applied to several JGF applications. 

One of the main drawbacks of this approach is the non object-oriented nature of 
current scientific applications, as this kind of applications does not provide adequate 
join point leverage to compose the sequential code with our collection. However, this 
limitation will have less impact in future as scientific codes become more object 
oriented. We can partially overcome this limitation by using the static crosscutting 
mechanisms of AspectJ to introduce the appropriate join points (as in the SOR 
application). 

A second limitation is when the sequential code is note amenable for 
parallelisation. One solution for this problem is to rewrite the core functionality to 
allow a more fine grained decomposition. As an example, in the RayTrace we could 
have a method renderLine which would provide more flexibility to derive the 
RayTracer parallel version. 

Current work includes the extension of this collection to support more orthogonal 
composition of broadcast, scatter and reduce pointcuts; and a more efficient 
implementation of these pointcuts on distributed memory machines (e.g., using MPI 
collective primitives). 

0

10

20

30

40

50

60

70

80

0 4 8 12 16 20 24 28 32

Aggregate Members

Ex
ec

ut
io

n 
Ti

m
e 

(s
)  

0

4

8

12

16

20

24

28

32

Sp
ee

d-
U

p 
  

0

13

26

39

52

65

78

91

104

0 4 8 12 16 20 24 28 32

Aggregate Members

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

0

4

8

12

16

20

24

28

32

Sp
ee

d-
U

p 
   

 



References 

1. S. Matsuoka, K. Taura, A. Yonezawa: Highly Efficient and Encapsulated Re-use of 
Synchronisation Code in Concurrent Object-Oriented Languages, OOPSLA ‘93, Oct. 1993. 

2. B. Harbulot, J. Gurd.: Using AspectJ to Separate Concerns in Parallel Scientific Java Code, 
ACM AOSD’04, Lancaster, UK, March 2004. 

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, J. Irwin. 
Aspect Oriented Programming, ECOOP ‘97, June 1997. 

4. S. Soares, E. Loureiro, P. Borba: Implementing Distribution and Persistence Aspects With 
AspectJ, OOPSLA ’02, November 2002. 

5. M. Ceccato, P. Tonella. Adding Distribution to Existing Applications by means of Aspect 
Oriented Programming, 4th IEEE SCAM, September 2004. 

6. E. Tilevich, S. Urbanski, Y. Smaragdakis, M. Fleury, Aspectizing Server-Side Distribution, 
IEEE ASE 2003, Montreal, Canada, October 2003. 

7. C. Zhang, H. Jacobsen. Resolving Feature Convolution in Middleware Systems, 
OOPSLA’04, Vancouver, Canada, October 2004. 

8. A. Yonezawa, M. Tokoro, ed, Object-Oriented Concurrent Programming, MIT Press, 1987. 
9. A. Chien, V. Karamcheti, J. Plevyak, X. Zhang, Concurrent Aggregates (CA) Language 

Report - Version 2.0, TR, Dep. Computer Science, University of Illinois, UC, Nov., 1993 
10. G. Wilson (Ed). Parallel Programming Using C++, MIT Press, 1996. 
11. M. Philippsen. A Survey of Concurrent Object-Oriented Languages, Concurrency: Practice 

and Experience, 10(12), August 2000. 
12. M. Factor, A. Schuster, K. Shagin. A Distributed Runtime for Java: Yesterday and Today, 

IEEE IPDPS’04, New Mexico, April 2004. 
13. F. Baude , L. Baduel, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici, Progamming, 

Composing Deplying for the Grid, in GRID COMPUTING: Software Environments and 
Tools, Jose C. Cunha and Omer F. Rana (Eds), Springer Verlag, January 2006. 

14. J. Maassen, T. Kielmann and H. Bal, GMI: Flexible and Efficient Group Method 
Invocation for Parallel Programming, Sixth Workshop on Languages, Compilers, and Run-
time Systems for Scalable Computers (LCR-02), Washington DC, March 2002. 

15. L. Baduel, F. Baude, D. Caromel, Object-Oriented SPMD, International Symposium on 
Cluster Computing and the Grid (CCGrid2005), Cardiff, May, 2005. 

16. J. Darlington, Y. Guo, H. To, J. Yang. Parallel Skeletons for Structured Composition, 
PPoPP’95, Santa Clara, USA, 1995. 

17. P. Trinder, K. Hammond, H. Loidl, S. Jones. Algorithm + Strategy = Parallelism, Journal 
of Functional Programming, 8(1), January 1998. 

18. F. Rabhi, S. Gorlatch (ed): Patterns and Skeletons for Parallel and Distributed Computing, 
Springer, 2003. 

19. K. Tan, D. Szafron, J. Schaeffer, J. Anvik, S. MacDonald. Using Generative Design 
Patterns to Generate Parallel Code for a Distributed Memory Environment, PPoPP'03, San 
Diego, California, USA, June, 2003. 

20. J. Sobral, Incrementally Developing Parallel Applications with AspectJ, IEEE IPDPS’06, 
Rhodes, Greece, April 2006 

21. C. Cunha, J. Sobral, M. Monteiro, M., Reusable Aspect-Oriented Implementations of 
Concurrency Patterns and Mechanisms, AOSD’06, Bonn, Germany, March 2006. 

22. www.openmp.org 
23. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An Overview of 

AspectJ. ECOOP 2001, Budapest, Hungary, June 2001. 
24. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, Getting Started 

with AspectJ. Communications of the ACM, 44(10), October 2001 
25. A. Smith, J. Bull, J. Obdrzálek: A Parallel Java Grande Benchmark Suite, SC’01, Nov. 01. 


