
BioGrid Application Toolkit: a Grid-based

Problem Solving Environment Tool for
Biomedical Data Analysis

R. Nóbrega, J. Barbosa�, A.P. Monteiro

Universidade do Porto, Faculdade de Engenharia,
Departamento de Engenharia Electrotécnica e de Computadores
Instituto de Engenharia Biomédica (INEB), Lab. Sinal e Imagem

Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)
e-mail: {nnobrega, jbarbosa, apm}@fe.up.pt

Abstract. In this paper, we describe a Problem Solving Environment
(PSE) tool called BioGrid Application Toolkit and its architecture over
a grid environment. BioGrid Application Toolkit is a general purpose
grid access tool that provides a parallel and distributed programming
environment; it provides an efficient web-based user interface that al-
lows users to develop, run and visualize parallel/distributed applications
running on heterogeneous computing resources connected by networks.
BioGrid Application Toolkit is easy to use and has two execution models:
streaming and data parallel mode. The system transparently schedules
the submitted jobs and gives user feedback on the job status. The rel-
evant components for the success of this parallel processing system will
focus in how effective the scheduler and interface is. We also discuss some
of the reasons for our design, present the initial results and discuss issues
that we consider relevant for future research.
Keywords: grid computing, problem solving environment, heteroge-
neous clusters

1 Introduction

The aim of grid computing is to provide an environment which allows easy,
ubiquitous access to geographically distributed, heterogeneous computing re-
sources. As the Grid provides integrated infrastructure for solving problems,
PSEs (Problem Solving Environments) have been developed to improve the col-
laboration among Grid services and reduce significantly the time and effort re-
quired to develop, run, and experiment with large scale Grid applications.

Biomedical data analysis, or Biomedical Engineering, is a field that includes
areas of research such as bioinformatics, biomechanics, biosignal processing,
biotechnology, computational biology, medical imaging, among others [6]. As this

� This work has been partially funded by the Department of Electrical and Computer
Engineering of the Faculty of Engineering of the University of Porto (FEUP), under
contract DEEC-ID/X/2004



field evolve, the size of biological data to be managed and analyzed increases,
requiring high-throughput computing. Grid computation matches well with this
need but it has been applied only to several computational bioinformatic tools.
In addition, the integrated solutions do not provide a high-level user interface
in order to be used by non-expert computer users. One of the contributions of
the work presented here is a high-level user interface that provides a problem
solving environment (PSE) for biomedical data analysis.

Problem-solving environments (PSEs) [8] are problem-oriented computing
environments that support the entire assortment of scientific computational
problem-solving activities ranging from problem formulation, algorithm selec-
tion, execution simulation and solution visualization. Thus, this PSE tool can
be viewed as the environment through which the users can exploit Grid resources.
This tool needs to be transparent in order to minimize the impact of the inher-
ent complexity on users. Transparency means that the distributed system hides
its distributed nature from the users, appearing and functioning as a normal
centralized system. The main advantage regarding to other available systems,
consists in using heterogeneous clusters - nodes might have different processing
capabilities.

– Cluster A cluster computer is a group of loosely coupled computers that
work together closely so that in many respects it can be viewed as though it
were a single computer. Clusters are commonly (but not always) connected
through fast local area networks.

– Grid A grid computer is a collection of geographically distributed, heteroge-
neous resources with software running on them to facilitate communication
between them, resource discovery, scheduling, load balancing, data delivery,
quality of service, authentication, delegation and related issues.

BioGrid Application Toolkit was created for accessing a grid network that
solves a computational problem with parallel and distributed computing algo-
rithms. The Grid resources are available programmatically to algorithms that
initiate a large number of computationally intensive jobs in streaming or data
parallel mode:

– streaming: when the user submits a set of dependent inputs that must
be processed by the submitted order. However, different streams might be
executed in parallel;

– data parallel: when the user submits independent inputs to be applied the
same algorithm.

The user models the processing requests (jobs) with Directed Acyclic Graphs
(DAGs). A DAG is a graph consisting of nodes (tasks) and vertices (data passed
between operators). It is directed, meaning that data flows in one direction only.
Furthermore, the graph is acyclic, prohibiting the presence of cycles within the
structure. The user is able to decide when to run a project and monitor its
execution as well as to create, save, open, close, delete, import and export a
project.



2 Related Work

This section describes some common projects with our application.

GRAM - Basic Job Submission and Control Service 1 is a uniform ser-
vice interface for remote job submission and control. It includes the ability to
stage files (entire directory trees of files if necessary) into and out of a compute
resource prior to and after job execution, remote I/O redirection, job status
monitoring, and job signaling (stop, restart, kill, etc.). GRAM supports basic
Grid security mechanisms and can map from Grid-wide identities to local ac-
counts for accounting purposes. GRAM is not a scheduler and it is often used
as a front-end to schedulers allowing Grid systems to submit jobs to the local
schedulers.
Nimrod/G [1] is a ”Grid aware” application - it is a tool for distributed para-
metric modeling. It exploits an understanding of its problem domain as well as
the nature of the computational Grid to provide a high level interface to the
user. Specifically, it provides transparent access to the computational resources,
and implements user level scheduling.
Condor-G: A Computation Management Agent for Multi-Institutional
Grids [7] is an extension to Grid via Globus Project 2. It’s a tool for managing
a variety of parallel computations in Grid environments In brief, it combines
the inter-domain resource management protocols of the Globus Toolkit and the
intra-domain resource management methods of Condor to allow the user to har-
ness multi-domain resources as if they all belong to one personal domain. The
user defines the tasks to be executed; Condor-G handles all aspects of discover-
ing and acquiring appropriate resources, regardless of their location; initiating,
monitoring, and managing execution on those resources; detecting and respond-
ing to failure; and notifying the user of termination.
NetSolve [10], is a client-agent-server system which provides a solution for ac-
cess to remote resources and software. It includes an integration with a variety
of client PSEs (Matlab, Mathematica, Octave). It uses server-proxies to lever-
age additional resource management and scheduling environments. NetSolves
agent based scheduling eliminates the need for the user to know the location
of resources capable of servicing the request and the fault tolerance mechanism
allows selecting alternate resources without intervention from the user. The Net-
Solve server hides complexity from the user by invoking parallel programs or jobs
on machines controlled by a batch queue.
DAGMan (Directed Acyclic Graph Manager) 3 is a meta-scheduler for
Condor that allows users to specify a directed acyclic graph (DAG) of tasks to
be executed with (potentially) complex relationships and dependencies. Condor
finds machines for the execution of programs, but it does not schedule programs
(jobs) based on dependencies. DAGMan submits jobs to Condor in an order

1 http://www.globus.org/grid software/computation/gram.php
2 www.globus.org
3 http://www.cs.wisc.edu/condor/dagman/



represented by a DAG and processes the results. An input file defined prior to
submission describes the DAG, and a Condor submit description file for each
program in the DAG is used by Condor. DAGMan is responsible for scheduling,
recovery, and reporting for the set of programs submitted to Condor.
Proteus, a Grid based Problem Solving Environment for Bioinformat-
ics [5] is a software architecture allowing to build and execute bioinformatics
applications on Computational Grids by using an ontology-based methodology
to describe bioinformatics applications as distributed workflows of software com-
ponents. It can be used to assist users in:

– formulating problems, allowing to compare different available applications
(and choosing among them) to solve a given problem, or to define a new
application as composition of available software components;

– running an application on the Grid, using the resources available in a given
moment thus leveraging the Grid scheduling and load balancing services;

– viewing and analyzing results, by using high level graphic libraries, steering
interfaces (that allow to interactively change the way a computation is con-
ducted), and accessing the past history of executions, i.e. the past results,
that form a knowledge base.

As a PSE tool, BioGrid Application Toolkit provides a complete solution for
transparent access to remote resources and software. The system allows users to
create new projects and submit them while others are still running, this is the
processing and management components of the PSE are independent of the user
interface. The main advantage of the BioGrid application toolkit is to consider
heterogeneity at the cluster level, this is, the scheduler can optimize job execution
for homogeneous as well as for heterogeneous clusters. In the current state of
development the scheduler assigns a entire job to a single cluster, although it is
a project aim to consider a multi-cluster assignment. The available algorithms in
the system are from the medical imaging area, however it is intended to consider
the areas of biosignal processing and bioinformatics in a near future 4.

3 The System Architecture

3.1 Logical Architecture

Figure 1 shows the logical architecture of the system. The layers identified
are:

1. User Services Layer (USL). This is the layer that provides a way for
users to interact with the application. The user interface was developed in
Java in order to remain independent of platform and operating system.

2. Business Logic Layer (BLL). Regardless of whether a business process
consists of a single step or an orchestrated workflow, this application requires
components that implement business rules and perform business tasks.

4 BioGrid is being developed mainly for biomedical engineering researchers
(www.ibmc.up.pt/ lab associado.php)



3. Data Access Layer (DAL). This is the layer that allows the application
to access a data store at some point during a business process. It makes
sense to abstract the logic necessary to access data in a separate layer of
data access layer. Doing so centralizes data access functionality and makes
it easier to configure and maintain.

4. Databases. The database contains all available functions and its parame-
ters, data types, information about the users and their projects, the logical
location (path) of inputs/outputs. Prior to execution the input data is up-
loaded to grid-level storage.

5. Grid Services. Provides transparent access to distributed processing. It
provides a scheduler to optimize execution on heterogeneous clusters. In the
current state of development, the scheduler assigns a user job (DAG) to a
single cluster.

6. Security. The security layer is concerned with authentication, authorization,
secure communication.
– Authentication It is defined as secure identification, which basically

means that we have a mechanism for securely identifying our users that
is appropriate for the security requirements of the application. Authenti-
cation is implemented in the user services layer to provide authorization,
auditing, and personalization capabilities. This involves requiring the
user to enter credentials (user name and password) to prove his identity.

– Authorization The authorization aspect of the security layer is con-
cerned with identifying the permissible actions for each authenticated
security principal. In simple terms, the authorization layer determines
who can do what.

– Secure Communication In addition to authenticating users and au-
thorizing requests, you must ensure that communication between the
tiers of the application are secure to avoid attacks in which data is sniffed
or tampered with while it is being transmitted or is being stored in a
queue. Secure communications involve securing data transfers between
remote components and services. It is used the following options for se-
cure communications:
• Securing the whole channel: Secure Sockets Layer (SSL). This is the

recommended option for HTTP channels, a widely accepted standard
to open SSL ports on the firewalls. This option is recommended when
exposing a service interface to the Web.

• Securing the data: Implementation of SOAP encryption mechanisms.
Encrypting a whole message makes the whole message unreadable if
the network packets become compromised.

7. Communication The communication layer defines how the components in
the application will communicate with each other. The communication layer
covers issues such as communication format and protocol.
– Format The communication between the BLL and the Grid is performed

using sockets. The communication between the DAL and the database is
performed with Java Database Connectivity (JDBC). JDBC technology



provides cross-DBMS connectivity to a wide range of SQL databases and
access to other tabular data sources, such as spreadsheets or flat files.

– Protocol The DAL and BLL layers are implemented with web ser-
vices. Communication to these layers is performed using SOAP which
is used for maximum interoperability. SOAP is an XML-based messag-
ing protocol that can be used to implement remote procedure calls and is
supported over various transport protocols, including HTTP. The com-
bination of HTTP and SOAP provides not only implementation inde-
pendence but also platform and programming language independence.
This is very important for deploying a general service in scientific com-
puting environments where heterogeneous computing systems exist and
preferred programming languages vary by scientific community.

Fig. 1. The Logical Architecture

3.2 Physical Architecture

The hardware organization is shown in Figure 2.

Job Manager (JM)
BioGrid Application Toolkit provides the ability for users to transparently ex-
ecute jobs on remote resources. This is implemented by a job manager service
that encapsulates all of the aspects of executing a job, or a set of jobs, from start
to finish. There are two levels of JMs:

– Global Job Manager (GJM) This is the Grid JM. It’s responsible for
orchestrating the services used to start a job or set of jobs. It accepts jobs,



Fig. 2. The Physical Architecture

prioritizes them, and distributes them to different resources (clusters) for
computation. In the actual development state the GJM assigns a entire job
to one cluster.

– Local Job Manager (LJM) This is the JM of each cluster. It will schedule
each job by selecting for each task the number of processors and the configu-
ration that minimizes the computing time. It also manages ”malleable tasks”
[2] which allows more performance from the cluster in executing DAGs.

The Medical Application Service (MAS)
The Medical Application Service (MAS) contains the business and data com-
ponents. These components offer interoperability, platform and programming
language independence and transparency to the users in the sense that they are
not aware about the Grid and database existences. MAS is implemented with
JAX-RPC Web Services 5, which are java-based webservices. These web services
are executed by Apache Tomcat, an application container. This service is used to
exchange information among other layers in order to increase the interoperability
among service components. MAS uses multithreading which allows two or more
projects to be performed in parallel within the same application. The result is
that MAS can continue to serve the user interface while processes projects to
the Grid and MAS can receive requests from different users at the same time.

5 http://java.sun.com/webservices/jaxrpc



The File Storage System
The physical location of the user inputs and outputs. Users are not aware of
where these resources are physically located (location transparency). The input
data referred in the user DAGs is, prior to execution and if not already avail-
able, uploaded to the File Storage System, which is shared by the participating
clusters.

4 Implementation Case

4.1 Job Workflow

Figure 3 shows the job business process, from creation to completion. The
entire process uses only one cluster.

Fig. 3. The Job Workflow sequence diagram

1. The user creates a project, saves it in the database and requests its execution;
2. BioGrid Application Toolkit sends the project to the MAS;
3. MAS sends the project to the Grid Global JM (job status = waiting);
4. The Global JM performs cluster scheduling (job status = running);
5. The cluster gets the inputs from the File Storage System, performs tasks

and saves the outputs in the File Storage System;
6. The Global JM notifies MAS that the project has been executed (job status

= finished);



7. The MAS notifies BioGrid Application Toolkit about the project status;
8. If the project has been executed, the user visualizes its outputs.

Job States
A job has 3 states:

– running When the job is currently in execution;
– finished When a job has finished its execution;
– waiting When the job is waiting to be schedule. A job may be in this state

if it needs to access a temporary unavailable resource.

4.2 User Interface

Figure 4 shows a screenshot of the application. The user interface allows the
user to treat the Grid as an entirely local resource, allowing the user to perform
the following job management operations:

– Submit jobs, indicating the function name, input/output files and parame-
ters;

– Query a jobs status or cancel the job;
– Be informed of job termination or problems;
– Obtain access to logs, providing a complete history of the job’s execution.

Fig. 4. The BioGrid Application Toolkit



DAG creation
Figure 5 shows the DAG drawing process. A user wishing to execute a job must
first create a project to provide information about it, where each DAG node
represents a function from the Functions Panel. This information includes the:

– dependencies between nodes;
– parameters for each node;
– source of standard input for nodes.

Fig. 5. The DAG drawing process

The DAG Properties Panel
This panel (Figure 6) contains the parameters for each function (node). Each
parameter is editable.

Fig. 6. The DAG Properties Panel

The Functions and Inputs Panels
Figure 7 shows the Functions and Inputs Panels, that allow users to access files



(inputs) stored on a remote machine as if they were stored locally, through a
file/folder hierarchy. The Functions Panel allows users to access database trans-
parently to get functions. These functions will be used in the DAG creation.
Graphically, a node represents a single function.

Fig. 7. The Functions and the Inputs Panels

5 Experimental Results

There are two types of results that matter to report: one is the user interface
and the other is the execution efficiency. To obtain a more objective evaluation
of the interface, it has to be tested according to the Interaction Design method-
ologies, which has not been done so far. Although the interface is very simple,
showing the algorithms that are available, their parameters and the sequence of
task execution (DAG representation), it is possible that such representation may
not be so clear to a non-computer expert user. The execution efficiency depends
on the scheduler (Job Manager) efficiency. The implemented scheduler is being
developed for a few years ago, and in its first version it optimized the execution
of a job (composed by several tasks) either in homogeneous and heterogeneous
clusters. In [3] it was shown the scheduler efficiency for a set of linear algebra
kernels, that are the base of many biomedical engineering algorithms. The second
version [2] optimizes the execution of multiple jobs (user requests) on a cluster
by allowing, the so called, parallel tasks. This is, each single task is executed
by using several processors, as in the first version, but independent tasks are al-
lowed to execute at the same time (in parallel) once there are available resources.
It results two levels of parallelism: job and task parallelism [4]. The system ef-
ficiency is then demonstrated by the efficiency of the available scheduler. The
algorithm chosen for the system evaluation is the object matching operation [9],
widely used in biomedical imaging, that requires the computation of eigenvalues
(tridiagonalization, Q matrix computation and QR iteration). It is considered
problem sizes that generate input square matrices from 2002 to 16002 elements.

Figure 8 shows the reply time for the object matching operation when sub-
mitted locally and remotely, for a 6 machine cluster with the peak performance



Local
Remote

matrix dimension (n)

ti
m

e
(s

)

1600140012001000800600400

800

600

400

200

0

Fig. 8. Reply time for local and remote job submission

Matrix size (n) 600 800 1000 1200 1400 1600

Remote reply time (s) 74.8 137.7 232.3 357.2 533.9 757.7

Local reply time (s) 54.1 100.9 174.8 274.4 421.2 610.5

Absolute increase (s) 20.7 36.8 57.5 82.8 112.7 147.2

Relative increase (%) 38.3 36.5 32.9 30.2 26.8 24.1
Table 1. Reply time for local and remote job submission; absolute and relative reply
time increase of remote over local execution

capacity of 970 Mflops. The local submission is made inside the local network
where the cluster is installed and the remote submission is made from a broad-
band Internet provider access. Figure 8 shows that remote submission implies
a higher reply time due to the communication that are made at a slower rate
than in the local network, but the same execution efficiency can be guaranteed
after the data is transmitted and the scheduler initiates the job execution. Al-
though the delay imposed increases with the problem size, Table 1 shows that
the relative reply time increase is less significant compared to the total reply
time.

It is important to notice that if the user wants to use the same data in
subsequent executions, the communications are reduced since only output data
may need to be transmitted. Also the output data is transmitted if the user
request that, because by default it is stored on the server user area.

6 Conclusions and Future Work

Here it was described the system architecture which has an interface over
a Grid environment and provides a parallel and distributed programming en-
vironment; it provides an efficient web-based user interface that allows users
to develop, run and visualize parallel/distributed applications running on het-
erogeneous computing resources connected by networks. The system have been
tested with one cluster. It was used RPC-based Web Services (JAX-RPC) to



exchange information among layers which increases the interoperability among
service components. The adoption of a services-oriented architecture based on
standard protocols will further reduce coupling, increase deployment options,
and reduce costs. Resource/service discovery and scheduling in Grid environ-
ments are critical areas for further research. Future work includes the extension
of the scheduler for a multicluster Grid and to develop an administrator version
for BioGrid Application Toolkit. This will allow an easier management of the
user profiles, functions and GUI configuration.

As a PSE-based tool, BioGrid Toolkit provides: an integrated computational
environment for solving problems in a particular domain; it uses standards as
part of the software infrastructure, which guarantees interoperability, easy de-
velopment and maintenance, extensibility and platform independence; problem
solving power without requiring user knowledge in the technologies used to effect
the solution.

References

1. D. Abramson, J. Giddy, and L. Kotler. High performance parametric modeling
with nimrod/g: Killer application for the global grid? In IPDPS, pages 520–528,
2000.

2. J. Barbosa, C. Morais, R. Nobrega, and A.P. Monteiro. Static scheduling of depen-
dent parallel tasks on heterogeneous clusters. In HeteroPar’05: 4th Int. Workshop
on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Net-
works. IEEE CS Press, 2005.

3. J. Barbosa, J. Tavares, and A.J. Padilha. Linear algebra algorithms in a het-
erogeneous cluster of personal computers. In Proceedings of 9th Heterogeneous
Computing Workshop, pages 147–159. IEEE CS Press, 2000.

4. J. Blazewicz, M. Machowiak, J. Weglarz, M. Kovalyov, and D. Trystram. Schedul-
ing malleable tasks on parallel processors to minimize the makespan. Annals of
Operations Research, (129):65–80, 2004.

5. M. Cannataro, C. Comito, F. Lo Schiavo, and P. Veltri. Proteus, a grid based
problem solving environment for bioinformatics: Architecture and experiments.
IEEE Computational Intelligence Bulletin, 3(1):7–18, February 2004.

6. John Enderle, Susan Blanchard, and Joseph Bronzino. Introduction to Biomedical
Engineering. Elsevier, Academic Press, second edition, 2005.

7. J. Frey, T. Tannenbaum, I. Foster, M. Livny, , and S. Tuecke. Condor-g: A com-
putation management agent for multi-institutional grids. In Tenth IEEE Symp.
on High Performance Distributed Computing, 2001.

8. J. R. Rice and R. F. Boisvert. From scientific software libraries to problem-solving
environments. IEEE Computational Science & Engineering, pages 44–53, Fall 1996.

9. S. E. Sclaroff and A. Pentland. Modal matching for correspondence and recog-
nition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17:545–561,
1995.

10. K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra. Netsolve: Grid enabling
scientific computing environments. In L. Grandinetti, editor, Advances in Paral-
lel Computing, volume Grid Computing: The New Frontier of High Performance
Computing of 14, chapter 1. Elsevier, 2005.


