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Abstract. We present a rewriting system that automatically vector-
izes signal transform algorithms at a high level of abstraction. The in-
put to the system is a transform algorithm given as a formula in the
well-known Kronecker product formalism. The output is a “vectorized”
formula, which means it consists exclusively of constructs that can be
directly mapped into short vector code. This approach obviates compiler
vectorization, which is known to be limited in this domain. We included
the formula vectorization into the Spiral program generator for signal
transforms, which enables us to generate vectorized code and optimize
through search over alternative algorithms. Benchmarks for the discrete
Fourier transform (DFT) show that our generated floating-point code is
competitive with and that our fixed-point code clearly outperforms the
best available libraries.

1 Introduction

Most recent architectures feature short vector SIMD instructions that provide
data types and instructions for the parallel execution of scalar operations in
short vectors of length ν (called ν-way). For example Intel’s SSE family provides
ν = 2 for double precision and ν = 4 for single precision floating point arithmetic
as well as ν = 8 for 16-bit and ν = 16 for 8-bit integer arithmetic. The potential
speed-up offered by these instructions makes them attractive in domains were
high performance is crucial, but they come at a price: Compilers often cannot
make optimal use of vector instructions, since the necessary program transfor-
mations are not well understood; this moves the burden to the programmer, who
is required to leave the standard C programming model, for example by using
so-called intrinsics interfaces to the instruction set.

In [1] we have argued that for the specific domain of signal transforms such
as the discrete Fourier transform (DFT) there is an attractive solution to this
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problem, namely to perform the vectorization at a higher level of abstraction by
manipulating Kronecker product expressions through mathematical identities.
The Kronecker product formalism has been known to be useful for the repre-
sentation and derivation for DFT algorithms [2] but also in the derivation of
parallel algorithms [3].

In this paper we describe an implementation of this formal vectorization in
the form of a rewriting system [4], the common tool used in symbolic compu-
tation. We then include the rewriting system into the Spiral program generator
[5], which uses the Kronecker product formalism as internal algorithm repre-
sentations. This enables us to automatically generate optimized vectorized code
through the search over available alternatives provided by Spiral. We show that
our approach works for the DFT (speed-up in parenthesis) for 2-way (1.5 times)
and 4-way floating point (3 times), and 8-way (5 times) and 16-way (6 times)
integer code. Benchmarks of our generated code against the Intel MKL and IPP
libraries and FFTW [6] show that our generated floating-point code is compet-
itive and our generated fixed-point code is at least a factor of 2 faster than the
vendor library.

Related work. The Intel C++ compiler includes a vectorizer based on loop
vectorization and translation of complex operations into two-way vector code.
FFTW 3.0.1 combines loop vectorization and an approach based on the linear-
ity of the DFT to obtain 4-way single-precision SSE code [6]. This combines
a hardcoded vectorization approach with FFTW’s capability to automatically
tune for the memory hierarchy. An approach to designing embedded processors
with vector SIMD instructions and for designing software for these processors is
presented in [7].

Organization of the paper. In Section 2 we provide background on SIMD
vector instructions, signal transforms and their fast algorithms, and the Spiral
program generator. The rewriting system is explained in Section 3 including ex-
amples of vectorization rules and vectorized formulas. Section 4 shows a number
of runtime benchmarks for the DFT. We offer conclusions in Section 5

2 Background

SIMD vector instructions. Recently, major vendors of general purpose micro-
processors have included short vector SIMD (single instruction, multiple data)
extensions into their instruction set architecture. Examples of SIMD extensions
include Intel’s MMX and SSE family, AMD’s 3DNow! family, and Motorola’s
AltiVec extension. SIMD extensions have the potential to speed up implemen-
tations in areas where the relevant algorithms exhibit fine grain parallelism but
are a major challenge to software developers.

In this paper we denote the vector length with ν. For example, SSE2 provides
2-way (ν = 2) double and 4-way (ν = 4) single precision floating point as well
as 8-way (ν = 8) 16-bit and 16-way (ν = 16) 8-bit integer vector instructions.

Signal transforms. A (linear) signal transform is a matrix-vector multi-
plication x 7→ y = Mx, where x is a real or complex input vector, M the
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transform matrix, and y the result. Examples of transforms include the dis-
crete Fourier transform (DFT), multi-dimensional DFTs (MDDFT), the Walsh-
Hadamard transform (WHT), and discrete Wavelet transforms (DWT) like the
Haar wavelet. For example, for an input vector x ∈ Cn, the DFT is defined by
the matrix

DFTn = [ωk`
n ]0≤k,`<n, ωn = exp(−2πi/n).

Algorithms for transforms can be written using the Kronecker product for-
malism [2, 3, 5] in the form of structured sparse matrix factorizations. In the
following, we use In to denote an n× n identity matrix, and

A⊗B = [ak`B], A = [ak`]

for the tensor product of matrices. Further we introduce the stride permutation
matrix defined, for m|n, by

Ln
m : jk + i 7→ im + j, 0 ≤ i < k, 0 ≤ j < m.

Equations (1)–(6) show examples of recursive transform algorithms, written
in the form of rules:

DFTmn →
(
DFTm⊗ In

)
Dm,n

(
Im⊗DFTn

)
Lnm

m (1)
DFTn → Xn RDFTn (2)

WHTmn → WHTm⊗WHTn (3)
MDDFTn1×···×nk

→ MDDFTn1×···×nr ⊗MDDFTnr+1×···×nk
(4)

MDDFTn → DFTn (5)
Haarn → Ln

2

(
In/2⊗DFT2

)
(6)

In (1), Dm,n is a complex diagonal matrix [2]. In (2), RDFT is the real version
of the DFT (i.e., for real input) and Xn is an X-shaped matrix containing only
the entries 0, ±1, ±i [2]. The WHT is a real matrix and exists only for two-
power size. WHT2 = DFT2 together with (3) defines the transform. In (4), the
transform takes as input a n1 × · · · × nk array, stored linearized in a vector.

Spiral. Recursive application of rules like (1)–(6) yields many different al-
gorithms for a given transform. Spiral [5] uses this fact to search for the fastest
one on a given platform. A user-specified transform (like DFT256) is expanded
by Spiral using rules into a formula, which is then translated into a C program
by a special formula compiler. The runtime of the program is measured and fed
into a search module, which triggers, in a feedback loop, the generation of a
modified formula based on a search strategy. Upon termination, Spiral outputs
the fastest program found.

In this paper, we explain a crucial module in Spiral: A rewriting system that
manipulates formulas to enable their direct compilation into SIMD vector code,
which obviates the need for compiler vectorization.

Complex arithmetic. To describe complex transforms in terms of real
arithmetic, we represent complex data vectors as real vectors using the inter-
leaved complex format (alternating real and imaginary parts of the complex
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entries). Since the complex multiplication (u + iv)(y + iz) is equivalent to the
real multiplication [ u −v

v u ] [ y
z ], we can write the complex matrix-vector multipli-

cation Mx ∈ Cn as Mx′ ∈ R2n, where we define M by replacing every entry
u + iv as [ u −v

v u ], and x′ is x in the interleaved complex format.

3 Vectorization through Rewriting

Our goal is to take formulas obtained by the recursive application of rules like
(1)–(6) and automatically manipulate them into a form that enables a direct
mapping into SIMD vector code. Further, we also want to explore different vec-
torizations for the same formula. The solution is a suitably designed rewriting
system that implements our previous ideas for formula-based vectorization in [1,
8].

Formula vectorization: The basic idea. The central formula construct
that can be implemented on all ν-way short vector extensions is

A⊗ Iν , (7)

where A is an arbitrary real matrix. Vector code is obtained by generating scalar
code for A (i.e., for x 7→ Ax) and replacing all scalar operations by their respec-
tive ν-way vector operations. For example, c=a+b is replaced by c=vadd(a,b).

Of course, most formulas do not match (7). In these cases we manipulate the
formula using rewriting rules to consist of components that either match (7) or
are among a small set of base cases. It turns out that for a large class of formulas
the only base cases needed are

L2ν
2 , L2ν

ν , Lν2

ν , (In/ν ⊗L2ν
2 )Dn(In/ν ⊗L2ν

ν ), (8)

where Dn is any complex diagonal matrix. For ν = 2 we also need the additional
base case

[1, i] =
[
1 0 0 −1
0 1 1 0

]
. (9)

We assume that vectorized implementations of (8) are available. Note that
Im⊗L2ν

2 converts a real vector x′ ∈ R2mν (which originates from a complex
vector x ∈ Cmν) from interleaved complex format into a block-interleaved com-
plex format with block size ν. Analogously, Im⊗L2ν

ν converts back from block-
interleaved into the interleaved complex format.

Definition 1. We call a formula vectorized if it is either of the form (7) or one
of the forms in (8) and (9), or of the form

Im⊗A or AB, (10)

where A and B are vectorized.
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Formula manipulation. We vectorize formulas through formula manipu-
lation using well-known mathematical identities such as (we assume that A is
n× n and B and C are m×m)

Imn = Im⊗ In (11)
Im⊗A = Lmn

m (A⊗ Im) Lmn
n (12)

Lkmn
n = (Lkn

n ⊗ Im)(Ik ⊗Lmn
n ) (13)

Lkmn
km = (Ik ⊗Lmn

m )(Lkn
k ⊗ Im) (14)

A⊗ (BC) = (A⊗B)(A⊗ C) (15)
A⊗B = (A⊗ Im)(In⊗B) = (In⊗B)(A⊗ Im) (16)

As a small example, we assume A is a real n× n matrix, and vectorize

Im⊗A (17)

for a ν-way vector instruction set.
We first apply (11) to obtain

Im/ν ⊗ Iν ⊗A

and then apply (12) to Iν ⊗A to get

Im/ν ⊗
(
Lnν

ν (A⊗ Iν) Lnν
n

)
. (18)

Note that in this formula A⊗Iν is already vectorized, but the stride permutations
are not. To vectorize the stride permutations, we apply (13) and (14) to get

Im/ν ⊗
(
(Ln

ν ⊗ Iν)(In/ν ⊗Lν2

ν )(A⊗ Iν)(In/ν ⊗Lν2

ν )(Ln
n/ν ⊗ Iν)

)
. (19)

Inspection shows that this formula is vectorized in the sense of Definition 1.

3.1 Rewriting System

Our goal is to automatically apply formula identities like (12)–(16) to transform
given formulas into vectorized formulas. Note that the order and actual param-
eters chosen for each of the applied identities is a nontrivial choice. Only the
correct choice will lead to vectorized formulas. Thus, automatic formula manip-
ulation requires an appropriately designed rewriting system [4]. Specifically, it
is a difficult problem to identify the right objects and rules in the system to
guarantee that it is confluent and converges to fully vectorized formulas, when
possible.

Vector tags. We introduce a set of tags to propagate vectorization infor-
mation through the formulas and to perform algebraic simplification of permu-
tations. Note that all objects remain matrices.

We tag a formula construct A to be translated into vector code for vector
length ν by

A︸︷︷︸
vec(ν)

= A.
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Further, we write
A⊗ν Iν = A⊗ Iν

to stipulate that the tensor product is to be mapped into vector code as explained
in Section 3 Using these tags, the base cases in (8) are expressed by

L2ν
2︸︷︷︸

vec(ν)

, L2ν
ν︸︷︷︸

vec(ν)

, Lν2

ν︸︷︷︸
vec(ν)

,
(

Dn︸︷︷︸
vec(ν)

)ν
, [1, i]︸︷︷︸

vec(2)

.

In addition we need variants of the operator (.) to handle the vectorization
of complex formulas (A is assumed to be n× n)

←→
A

ν
= A (20)

−→
A

ν
= (In/ν ⊗L2ν

2 )A (21)
←−
A

ν
= A(In/ν ⊗L2ν

ν ) (22)

A
ν

= (In/ν ⊗L2ν
2

)
A(In/ν ⊗L2ν

ν ). (23)

(20)–(23) are the four variants of A that have either interleaved or block-interleaved
input and output format. The format conversions introduce the building blocks
L2ν

2 and L2ν
ν defined in (8). A key idea in our rewriting system is to minimize

these format conversions by applying the identity

L2ν
2 L2ν

ν = I2ν .

To facilitate this simplification we introduce (20)–(23) as objects into our rewrit-
ing system. Rules (31)–(44) operate on the constructs (20)–(23) and encode the
knowledge where to introduce L2ν

2 and L2ν
ν to minimize format conversion over-

head.

Table 1. Stride permutation rules.

Lnν
n︸︷︷︸

vec(ν)

→ (
In/ν ⊗ Lν2

ν︸︷︷︸
vec(ν)

)(
Ln

n/ν ⊗ν Iν

)
(24)

Lnν
ν︸︷︷︸

vec(ν)

→ (
Ln

ν ⊗ν Iν

)(
In/ν ⊗ Lν2

ν︸︷︷︸
vec(ν)

)
(25)

Lmn
m︸︷︷︸

vec(ν)

→ (
Lmn/ν

m ⊗ν Iν

)(
Imn/ν2 ⊗ Lν2

ν︸︷︷︸
vec(ν)

)(
(In/ν ⊗Lm

m/ν)⊗ν Iν

)
(26)

Rules. The goal is to vectorize a given formula. In our rewriting system,
this is done by tagging the formula with vec(ν) and apply rules that vectorize
the formula, i.e., rewrite it such that the only components tagged with vec(ν)
are vectorizable base cases. Rules are applied by matching the left side of a rule



7

Table 2. Tensor product rules. A is an n× n matrix.

(
A⊗ Im︸ ︷︷ ︸
vec(ν)

) → (
A⊗ Im/ν

)⊗ν Iν (27)

(
Im⊗A︸ ︷︷ ︸
vec(ν)

) →





Im/ν ⊗
(
Iν ⊗A

)
︸ ︷︷ ︸

vec(ν)

Lmn
m︸︷︷︸

vec(ν)

(
A⊗ Im︸ ︷︷ ︸
vec(ν)

)
Lmn

n︸︷︷︸
vec(ν)

(28)

(
Im⊗A

)
Lmn

m︸ ︷︷ ︸
vec(ν)

→





Lmn
m︸︷︷︸

vec(ν)

(
A⊗ Im︸ ︷︷ ︸
vec(ν)

)

(
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

(
A⊗ν Iν

))(
L

mn/ν

m/ν ⊗ν Iν

) (29)

(
Ik ⊗

(
Im⊗An×n)

Lmn
m

)
Lkmn

k

︸ ︷︷ ︸
vec(ν)

→ (
Lkm

k ⊗ In︸ ︷︷ ︸
vec(ν)

)(
Im⊗

(
Ik ⊗An×n)

Lkn
k︸ ︷︷ ︸

vec(ν)

)(
Lmn

m ⊗ Ik︸ ︷︷ ︸
vec(ν)

)
(30)

Table 3. Bar operator rules (left: recursive; right: base cases). A is an n× n matrix.

(
A

)
︸︷︷︸
vec(ν)

→
←−−−→(

A︸︷︷︸
vec(ν)

)ν

(31)

←→
AB

ν → ←−
A

ν−→
B

ν
(32)

←−
AB

ν → ←−
A

ν
B

ν
(33)

−→
AB

ν → A
ν−→
B

ν
(34)

AB
ν → A

ν
B

ν
(35)

←−−→
Im⊗A

ν → Im⊗←→A
ν
(36)

←−−−−
Im⊗A

ν → Im⊗←−A
ν

(37)

Im⊗A
ν → Im⊗A

ν
(38)

−−−−→
Im⊗A

ν → Im⊗−→A
ν

(39)

←−−−−−
A⊗ν Iν

ν → (In/ν ⊗ L2ν
ν︸︷︷︸

vec(ν)

)(A⊗ν Iν) (40)

A⊗ν Iν
ν → A⊗ν Iν (41)

−−−−−→
A⊗ν Iν

ν → (A⊗ν Iν)(In/ν ⊗ L2ν
2︸︷︷︸

vec(ν)

) (42)

Lmn
m → Lmn

m ⊗ I2 (43)

( Lν2

ν︸︷︷︸
vec(ν)

)
ν

→ (L2ν
ν ⊗ν Iν)(I2⊗ Lν2

ν︸︷︷︸
vec(ν)

)(L2ν
2 ⊗ν Iν)(44)

against a given expression, extracting the parameters defined in the left side,
and replacing it with one of the choices in the right side parameterized by the
extracted parameters. Most of our rewriting rules are shown in Tables 1–3.

The important difference between identities like (11)–(16) and rules like (24)–
(44) is that the rules encode the decisions how to apply the identities, i.e., fix the
choice of parameters. For instance, both identities (13) and (14) can be applied
to Lnν

n for composite n and ta wo-power ν; however, only (14) with the specific
choice k = m/ν, m = ν, and n = ν leads to a vectorized result:

Lnν
n = (In/ν ⊗Lν2

ν )(Ln
n/ν ⊗ Iν).

This knowledge is encoded in rule (24) which chooses the right parameters.
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A similar degree of freedom for choosing m and n applies to identity (11)
and the corresponding knowledge to choose the right factorization is encoded in
first alternatives of rules (27) and (28).

Simple example. We return to our previous example (17) and explain how
it is handled by our rewriting system. We start with the tagged formula

Im⊗A︸ ︷︷ ︸
vec(ν)

,

which means “Im⊗A is to be vectorized.” The system can only apply one of the
alternatives of rule (28). Suppose it chooses the first alternative, which yields

Im/ν ⊗(Iν ⊗A︸ ︷︷ ︸
vec(ν)

)

and then applies the second alternative of (28) to (Iν ⊗A), which leads to

Im/ν ⊗
(

Lnν
ν︸︷︷︸

vec(ν)

(A⊗ν Iν) Lnν
n︸︷︷︸

vec(ν)

)
.

Next, only rules (24) and (25) match, which yields

Im/ν ⊗
(
(Ln

ν ⊗ν Iν)(In/ν ⊗ Lν2

ν︸︷︷︸
vec(ν)

)(A⊗ν Iν)(In/ν ⊗ Lν2

ν︸︷︷︸
vec(ν)

)(Ln
n/ν ⊗ν Iν)

)
,

which is the properly tagged version of the vectorized formula (19).
Example: DFT. We now show how our rewriting system vectorizes DFTmn

with ν2 | mn. The vectorization process has to overcome three crucial problems
for an arbitrary two-power ν: 1) handle the interleaved complex format, 2) vec-
torize the stride permutation, and 3) vectorize the complex diagonal matrix. Our
example shows how to cope with these problems and how to get the short-vector
FFT algorithm [8].

The DFT is a complex transform, but vector instructions operate on real
vectors. Thus, we have to start with DFTmn, tagged for vectorization. First the
system commutes the vector tag using (31) and the

←→
(.)

ν
operator and breaks

the product using (32)–(39):

(DFTmn)︸ ︷︷ ︸
vec(ν)

→
(
(DFTm⊗ In)Dm,n(Im⊗DFTn) Lmn

m

)

︸ ︷︷ ︸
vec(ν)

→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
(DFTm⊗ In)Dm,n(Im⊗DFTn) Lmn

m︸ ︷︷ ︸
vec(ν)

)ν

→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
(DFTm⊗ In︸ ︷︷ ︸

vec(ν)

)Dm,n︸ ︷︷ ︸
vec(ν)

(Im⊗DFTn) Lmn
m︸ ︷︷ ︸

vec(ν)

)ν

→←−−−−−−−−−
(DFTm⊗ In︸ ︷︷ ︸

vec(ν)

)
ν
(Dm,n︸ ︷︷ ︸
vec(ν)

)
ν−−−−−−−−−−−−−→
(Im⊗DFTn) Lmn

m︸ ︷︷ ︸
vec(ν)

ν
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We now continue with the three factors separately. The system applies (27) and
(40) to the first factor

←−−−−−−−−−
(DFTm⊗ In︸ ︷︷ ︸

vec(ν)

)
ν
→←−−−−−−−−−−−−−−−

(DFTm⊗ In/ν)⊗ν Iν
ν

→ (Imn/ν ⊗ L2ν
ν︸︷︷︸

vec(ν)

)(DFTm⊗ In/ν ⊗ν Iν)

which is vectorized. The second factor is already vectorized. For the third factor,
suppose the system chooses the second alternative of (30) and then breaks and
propagates

−→
(.)

ν
using (32)–(39):

−−−−−−−−−−−−−→
(Im⊗DFTn) Lmn

m︸ ︷︷ ︸
vec(ν)

ν
→
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

(DFTn⊗ν Iν)
)
(Lmn

m ⊗ν Iν)
ν

→ (
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

(DFTn⊗ν Iν)
ν)−−−−−−−−→

(Lmn
m ⊗ν Iν)

ν

→ (
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

ν
(DFTn⊗ν Iν)

ν)−−−−−−−−→
(Lmn

m ⊗ν Iν)
ν

We now continue with the factors of the tensor product. One difficult part of
the vectorization is the interplay of (.) and the stride permutation Lnν

ν . First,
rule (25) factors the stride permutation and then rules (32)–(39) handle (.)

ν
. Fi-

nally rules (40)–(44) encode the rather involved manipulation required to com-
pletely vectorize:

Lnν
ν︸︷︷︸

vec(ν)

ν → (Ln
ν ⊗ Iν︸ ︷︷ ︸
vec(ν)

)(In/ν ⊗ Lν2

ν︸︷︷︸
vec(ν)

)
ν

→ (Ln
ν ⊗ν Iν)

ν
(

In/ν ⊗( Lν2

ν︸︷︷︸
vec(ν)

)
ν)

→ (Ln
ν ⊗ν Iν)

(
In/ν ⊗(L2ν

ν ⊗ν Iν)(I2⊗ Lν2

ν︸︷︷︸
vec(ν)

)(L2ν
2 ⊗ν Iν)

)

The vectorization of the remaining constructs is straight-forward using rules
(40)–(44):

(DFTn⊗ν Iν)
ν → (

DFTn ⊗ν Iν
)

and
−−−−−−−−→
(Lmn

m ⊗ν Iν)
ν
→ (Lmn

m ⊗ν Iν)
(
Imn/ν ⊗ L2ν

2︸︷︷︸
vec(ν)

)

→ (
(Lmn

m ⊗ I2)⊗ν Iν
)(

Imn/ν ⊗ L2ν
2︸︷︷︸

vec(ν)

)
.
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Collecting the vectorized formulas yields a completely vectorized FFT

(Imn/ν ⊗ L2ν
ν︸︷︷︸

vec(ν)

)(DFTm⊗ In/ν ⊗ν Iν)(Dm,n︸ ︷︷ ︸
vec(ν)

)
ν

(
Im/ν ⊗(Ln

ν ⊗ν Iν)(In/ν ⊗(L2ν
ν ⊗ν Iν)(I2⊗ Lν2

ν︸︷︷︸
vec(ν)

)(L2ν
2 ⊗ν Iν))(DFTn ⊗ν Iν)

)

(
(Lmn

m ⊗ I2)⊗ν Iν
)
(Imn/ν ⊗ L2ν

2︸︷︷︸
vec(ν)

).

Inspection shows that this formula is indeed vectorized in the sense of Definition
1.

Note that there are degrees of freedom in applying our rule set, which thus
yield different vectorizations. The search in the Spiral system will select the best
for the given platform.

4 Experimental Results

We incorporated our rewriting system into the Spiral code generator to automat-
ically generate vector code and search over alternative algorithms or formulas.
We show runtime benchmarks on a 3 GHz Intel Pentium 4 running Windows
XP and a 3.6 GHz Intel Pentium 4 running Linux kernel 2.6. We used the Intel
C++ compiler 9.0 with options “/QxKW /O3 /G7 /Qc99 /Qrestrict” for vec-
tor code and “/O3 /G7 /Qc99 /Qrestrict” for scalar x86 and x87 code. These
options turned out to produce the fastest code. DFTn performance is measured
in pseudo Mflop/s for floating-point code and in pseudo Mfpop/s for fixed-point
code, both computed as 5n log2 n/(runtime [ms]). The Haarn wavelet perfor-
mance is measured in Mfpop/s = 2N/(runtime [ms]). For all performance results
higher is better. We compare our generated code with the Intel MKL 8.0 (DFTI
functions) and IPP 5.0 library and with FFTW 3.1 [6] for both two-powers and
multiples of ν.

2-way double-precision. Figure 1 evaluates our approach for two-way vec-
torization. We compare two-power DFTs of sizes 27 ≤ n ≤ 214: 1) Spiral gener-
ated scalar x87 code; 2) Spiral generated SSE2 code; 3) FFTW 3.1 with enabled
SSE2 support; and 4) Intel IPP 5.0 using SSE2. Spiral and FFTW achieve sim-
ilar performance with FFTW being slightly faster, and IPP is between 5% and
15% faster than both. For Spiral generated code, SSE2 vectorization provides
around 50% speed-up over scalar code.

4-way single-precision. Figure 2 compares DFT code for two-power sizes
24 ≤ n ≤ 212: 1) Spiral generated scalar x87 code; 2) Spiral generated scalar
x87 code vectorized by Intel’s compiler (option “/QxKW”); 3) Spiral generated
4-way SSE code; 4) FFTW 3.1 with enabled SSE support; and 5) Intel IPP 5.0
using SSE. Spiral generated SSE code is up to 3 times faster as Spiral generated
scalar x87 code. Using the Intel C++ compiler to vectorize code leads only to
around 50% speed-up. For 16 ≤ n ≤ 128, Spiral generated SSE code is clearly the
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Fig. 1. Performance of DFTn with n = 2k, implemented in double-precision on a
3.6 GHz Pentium 4.

fastest. For n=256 both FFTW and IPP are slightly faster as Spiral generated
SSE code. For 512 ≤ n ≤ 2048, Spiral generated SSE code is within 10% of IPP.

8-way 16-bit fixed-point. Figure 3 compares two-power DFT fixed-point
code. It shows 1) Spiral generated SSE2 code (8-way, 16-bit), 2) scalar 16-bit
x86 code, and 3) Intel IPP 5.0 (16-bit). Spiral’s SSE2 vectorization consistently
provides speed-up of 5 times over scalar x86 code. Spiral generated SSE2 code
is 2 to 2.5 times faster as the IPP and 5 to 6 times faster than Spiral generated
scalar code. Figure 4 shows that for DFTs of size n = 64 × 2k3`5m SSE2 code
generated by Spiral maintains the speed-up of 5 times over scalar x86 code.
IPP does only provide two-power FFTs for 16-bit fixed-point. FFTW does not
provide fixed-point code.

16-way 8-bit fixed-point. Figure 5 compares implementations of the Haar
wavelet: 1) Spiral generated SSE2 code, 2) Spiral generated scalar 8-bit x86 code
(16-way, 8-bit), and 3) the Intel IPP 5.0 (8-bit). For Spiral, SSE2 vectorization
provides a speed-up of up to 6 times over scalar x86 code. Spiral generated SSE2
code is 2 to 2.5 times faster than the IPP. FFTW does not implement Haar
wavelets.

The lack of precision makes large size DFT implementations unpractical in
this case.
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Fig. 2. Performance of DFTn with n = 2k, implemented in single-precision on a 3 GHz
Pentium 4.

5 Conclusion

SIMD vector instructions have a huge potential to speed up performance critical
computational kernels with fine-grain parallelism. However, compiler support is
limited and typically programmers have to resort to low-level C extensions or
to assembly language programming to realize the potential of SIMD extensions.
To overcome these problems for the domain of signal transforms, we presented a
domain-specific vectorization framework for signal transform algorithms and in
particular FFTs. The basic idea is to vectorize at a high mathematical level of
abstraction, where more structural information is available as in the correspond-
ing C code. The suitable tool for implementing this technique is a rule based
rewriting system, which we included in Spiral to enable search in tandem with
vectorization. Experiments with the DFT show the viability of the approach.
We are currently exploring similar strategies for shared and distribute memory
parallelization.
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