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Abstract. We consider block iterative methods for the solution of large

scale linear-quadratic optimal control problems arising from the control
of parabolic partial differential equations over a finite control horizon.
This paradigm models new production strategies in oil and gas fields. To
simulate the behavior in a reservoir under different scenarios, an optimal
control problem can be formulated based on the constituent equations.
After spatial discretization by finite element or finite difference methods,
such problems typically require the optimal control of n coupled ordinary
differential equations, where n can be quite large. Its solution by conven-
tional methods can be prohibitively expensive in terms of computational
cost and memory requirements.

We describe two iterative algorithms. The first algorithm employs a
CG method to solve a symmetric positive definite reduced linear system
for the unknown control variable. A preconditioner is described, which
we prove yields a rate of convergence independent of the space and time
discretization parameters, however, double iteration is required. A sec-
ond algorithm is designed to avoid double iteration by introducing an
auxiliary variable. It yields a symmetric indefinite system, and for this
system a positive definite block preconditioner is described. We prove
a rate of convergence independent of the space and time discretization
parameters when MINRES acceleration is used. Numerical results are
presented for test problems.

1 Introduction

Systems governed by parabolic partial differential equations arise in the model-
ing of various processes in the oil industry. An instance is the processes whose
main objective is the displacement of a resident fluid (oil) by the injection of
another fluid (gas) [14]. The associated equation for the pressure is parabolic.
In this context, recent works have demonstrated that control strategies based
on Optimal Control Theory (OCT) can potentially increase the production in
oil and gas fields [14]. In addition, the efficiency of the OCT model makes it
suitable for application to real reservoirs simulated using large scale models, in
contrast to many existing techniques [12]. The main bottleneck in this approach,
however, is the need to find a fast simulator to test all the necessary scenarios
to decide an adequate strategy for each reservoir.
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Our purpose in this paper, is to study iterative algorithms for the solution
of finite time linear-quadratic optimal control problems governed by a parabolic
partial differential equation. Such problems are computationally intensive and
require the minimization of some quadratic objective functional J(·) (represent-
ing some cost to be minimized over time), subject to linear constraints given
by a stiff system of n ordinary differential equations, where n is typically quite
large. An application of the Pontryagin maximum principle to determine the
optimal solution, see [9], results in a Hamiltonian system of ordinary differential
equations, with initial and final conditions. This system is traditionally solved
by reduction to a matrix Riccati equation for an unknown matrix function P (t)
of size n, on an interval [0, T ], see [9, 7, 11]. Solving the Riccati equation, and
storing matrix P (t) of size n on a time interval [0, T ] can become prohibitively
expensive for large n. Instead, motivated by the parareal algorithm (of Lions,
Maday and Turinici [6]) and iterative shooting methods in the control context
[4, 13], we propose iterative algorithms for such control problems.

We formulate iterative algorithms for the parabolic optimal control problem
based on a saddle point formulation [11]. We consider finite difference (or finite
element) discretizations of the parabolic equation in space, and the θ-scheme
in time. The cost functional is discretized in time using a trapezoidal or mid-
point rule for the state variable and piecewise constant in time and space for
the control variable. Lagrange multipliers (adjoint) variables are introduced to
enforce the constraints, and the saddle point linear system is formulated for the
optimal solution. Inspired by the reduction approach employed in [11] for elliptic
control problems, we develop two algorithms whose rate of convergence does not
deteriorate as the mesh parameters become small. The first algorithm uses a CG
method to solve a symmetric positive definite reduced linear system for deter-
mining the unknown control variable. We show under specific assumptions that
the resulting system has a condition number independent of the mesh parame-
ters. For the second algorithm, we expand the reduced system consistently by
introducing an auxiliary variable. We describe a block preconditioned algorithm
using a MINRES method on the auxiliary and control variables. We analyze the
convergence rates of these two proposed iterative algorithms.

Our discussion is organized as follows. In Section 2, we introduce the optimal
control problem for the parabolic problem. In Section 3, we introduce the finite
dimensional linear-quadratic optimal control problem. We also introduce the
saddle point system obtained by a stable discretization of the parabolic control
problem. In Section 4, we describe the preconditioners and theoretical results
that justify the efficiency of the proposed methods. Finally, in Section 5, nu-
merical results are presented which show that the rate of convergence of both
proposed algorithms is independent of the space and time discretization.
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2 The optimal control problem

Let A denote an operator from a space L2(to, tf ;Y ) to L2(to, tf ;Y ′), where Y
is a Hilbert space (in our case Y = H1

0 (Ω)). The norm is the H-norm where H
is a pivot Hilbert space with Y ⊂ H ⊂ Y ′ and H = L2(Ω). We consider the
following state equation with z(t) ∈ Y :

{

∂tz + Az = Bv, for t0 < t < tf

z(0) = zo, on Ω,
(1)

where z(·) ∈ Y is known as the state variable and the operator A is coercive.
The distributed control v(·) belongs to an admissible space U = L2(to, tf ;Ω)
and B is an operator in L(U , L2(to, tf ;Y ′)). We assume that for each v(·), this
problem is well posed; therefore we emphasize the dependence of z on v ∈ U
using the notation z(v). We associate the following cost function with the state
equation (1):

J(z(u), u) :=
q

2
‖z(v) − z∗‖

2
L2(to,tf ;L2(Ω)) +

r

2
‖v‖2

L2(to,tf ;Ω)

+
s

2
‖z(v)(tf , x) − z∗(tf , x)‖

2
L2(Ω), (2)

where z∗ is a given target. The optimal control problem for equation (1) consists
of finding a controller u ∈ U which minimizes the cost function (2):

u = argmin v∈UJ(z(v), v). (3)

Since the terms r
2‖v‖L2(to,tf ;Ω) > 0 and q

2‖z(v) − z?‖L2(to,tf ;L2(Ω)) ≥ 0 in the
cost function (2), for r > 0 and q > 0, following [7], the optimal control (3) is
well posed. To discretize state equation (1) we apply the finite element method
to its weak formulation for every fixed t ∈ (to, tf ). Hence, z ∈ L2(to, tf ;Y )) is a
weak solution of (1) provided its weak derivative ż ∈ L2(to, tf ;Y ′)) and

(ż(t), η) + (Az(t), η) = (Bu(t), η) for all η ∈ Y and t ∈ (to, tf ). (4)

In what follows, the form (Az, η) is assumed to be continuous on Y × Y and
Y -elliptic. So let Yh(Ω) ⊂ Y = H1

o (Ω) and let zho ∈ Yh be a good approximation
for z(to), the L2(Ω)-projection for instance. The bilinear form (Bu, η) is assumed
to be continuous on U × Y . So let Uh(Ω) ⊂ U be a subspace for approximating
u. Then the semi-discretization is given by

(żh(t), ηh) + (Azh(t), ηh) = (Buh(t), ηh) for all ηh ∈ Yh and t ∈ (to, tf ), (5)

zh(to) = zho. (6)

Let {φ1(x), ..., φn(x)} a basis of Yh and {ϕ1(x), ..., ϕm(x)} a basis of Uh. Con-
sequently, zh(t) =

∑n
j=1 φj(x)ξj(t) and uh(t) =

∑m
j=1 ϕj(x)µj(t). Then, for any

t ∈ (to, tf ), the discrete variational equality (5) is equivalent to

n
∑

j=1

(φj , φi) ξ̇j(t) +

n
∑

j=1

(Aφj , φi) ξj(t) =

m
∑

j=1

(Bϕj , φi)µj(t) for all i ∈ {1, .., n}.
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Denoting by Âh := (Aφj , φi)i,j , M̂h := (φj , φi)i,j , B̂h = (Bϕj , φi)i,j , ξ =

(ξj(t))j , µ = (µj(t))j and ξo = ξ(t0). We obtain the following system of or-
dinary differential equations:

M̂hξ̇ + Âhξ = B̂hµ, t ∈ (to, tf ) and ξ(to) = ξo. (7)

By analogy with the spatial discretization of the state equation (1), the spatial
discretization of the functional (2) is:

Jh(ξ, u) =
q

2

∫ tf

to

(ξ − ξ∗)
T (t)M̂h(ξ − ξ∗)(t)

+
r

2

∫ tf

to

uT (t)Rhu(t)

+
s

2
(ξ − ξ∗)

T (tf )M̂h(ξ − ξ∗)(tf ), (8)

where both Rh and M̂h are mass matrices. We assume that z(u) is discretized
using a piecewise linear function while u is discretized using discontinuous piece-
wise constant functions. Since the matrix M̂h is symmetric positive definite, we
factorize as M̂h = UT

h Uh and introduce new variables y = Uhξ and u = µ, then
the functional (8) takes the form:

Jh(y, u) =
q

2

∫ tf

to

(y − y∗)T (y − y∗) +
r

2

∫ tf

to

uTRhu

+
s

2
(y − y∗)

T (y − y∗)(tf ), (9)

and the state equation (7) is reduced to:
{

ẏ = Ay +B u, t ∈ (0, tf )

y(to) = y0,
(10)

where A := U−T
h ÂhU

−1
h and B := U−T

h B̂h.
In summary, spatial discretization transforms the constraints (1) into a sys-

tem of n linear ordinary differential equations (10), where y(·) ∈ R
n denotes

state space variables having initial value y0, while u(·) ∈ R
m denotes control

variables. Although, A, B are n×n and n×m matrix functions, respectively, we
consider them as time-invariants and given by a symmetric and negative definite
matrix A of size n (with n large). In the case A = −∆, matrix A will correspond
to a discrete Laplacian, and its eigenvalues will lie in an interval [−c,−d] where
c = O(h−2) and d = O(1) (for grid size h in the spatial discretization of the
parabolic equation).

The discrete optimal control problem seeks y(·) ∈ R
n and u(·) ∈ R

m satisfy-
ing (10) and minimizing a non-negative quadratic cost functional J(., .), possibly
more general than (9), given by:











J(y, u) ≡
∫ tf

to
l(y, u) dt+ ψ(y(tf )), where

l(y, u) ≡ 1
2

(

e(t)TQ(t)e(t) + u(t)TR(t)u(t)
)

,

ψ(y(tf )) ≡ 1
2 (y(tf ) − y∗(tf ))

T
C (y(tf ) − y∗(tf )) ,

(11)
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where e(t) := y(t)− y∗(t), Q is an n×n symmetric positive semi-definite matrix
function, y∗(·) ∈ R

n is a given tracking function, C is an n × n symmetric
positive semidefinite matrix, and R is an m × m symmetric positive definite
matrix function. The linear-quadratic optimal control problem, thus, seeks the
minimum of J(·) in (11) subject to the constraints (10). Given the tracking
function y∗(·), the optimal control u(·) must ideally yield y(·) “close” to y∗(·).

3 The basic saddle point system

In this section, we consider stable time-discretization of the optimal control
problem given by:

min J(y, u), (12)

subject to
{

ẏ = Ay +B u, for to < t < tf
y(to) = y0,

(13)

where J(y, u) is defined in (11) with matrices Q, R and S being time invariant.
We discretize the time domain t ∈ [to, tf ] using (l − 1) interior grid points, so
that the time step is τ = (tf − to)/(l) with ti = iτ . The state variable y at the
time ti is denoted by yi := y(ti). We assume that the controller u is constant
on each interval (ti, ti+1] with the value ui+1/2 = u(ti+1/2). Hence, a stable
discretization of equation (13) using the θ-scheme can be written as:

F1yi+1 = F0yi + τBui+1/2, y0 = y(to), i = 0, 1, ..., l − 1, (14)

where F1, F0 ∈ <n×n are (constant) matrices given by F0 := I + τ(1 − θ)A and
F1 := I−τθA. Using a full discretization in time, equation (13) takes the matrix
form:

Ey +Nu = f , (15)

where the discrete state vector y ∈ <nl and control vector u ∈ <ml are:

y := [y1, . . . , yl]
T and u := [u1/2, . . . , ul−1/2]

T , (16)

respectively. The input vector f ∈ <nl is given by f := [−F0yo, 0, ..., 0]
T , and the

matrices E ∈ <(nl)×(nl) and N ∈ <(ml)×(ml) have the following block structure:

E :=











−F1

F0 −F1

. . .
. . .

F0 −F1











and N := τ







B
. . .

B






. (17)

The discretization of the performance functional J(y, u) takes the form:

Jh(y, u) ≡
1

2
(uTGuT + eTZe + eTCe(tf )), (18)
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where vector e ∈ <nl is defined in terms of the discrete error at time ti defined
as ei := y(iτ) − y∗(iτ) for i = 1, ..., l. Hence, the discrete error vector is defined
as e := [eT

1 , . . . , e
T
l ]T . In the numerical experiments, we consider matrix G to be

diagonal since we approximate the controller using piecewise constant functions
in time and also in space. The error e is approximated using piecewise linear
functions in both time and space, hence matrix Z is block tri-diagonal where
each block is matrix M̂h. The discrete Lagrangian Lh(y,u,p) has the matrix
form:

Lh(y,u,p) =
1

2
(uTGuT + eTKe) + pT (Ey +Nu − f), (19)

where K is defined as K := Z + Γ and Γ = diag(0, 0, ..., 0, C). To obtain a
discrete saddle formulation of (19), optimality conditions analogous to Section
2 are used. Hence, the discrete saddle point system has the matrix form:





K 0 ET

0 G NT

E N 0









y

u

p



 =





Kg

0
f



 (20)

where g := [gi], gi = y∗(iτ). In the following, we study the condition number of
the evolution matrix E.

Theorem 1. Let matrix A be a n × n symmetric negative definite with eigen-
values λi(A) for 1 ≤ i ≤ n and let the evolution matrix E be as defined in (17)
with matrices F0 and F1 given by:

F0 := I + τ(1 − θ)A and F1 := I − τθA (21)

for 0 ≤ θ ≤ 1. Then, there are no stability restrictions on τ when θ ≥ 1
2 , while if

θ < 1
2 , then (14) will be stable only if τ ≤ 2/ ((1 − 2θ)ρmax). In addition matrix

EET has the condition number:

cond(EET ) ≤
4 (1 + τθρmax)

2

(τρmin)2
(22)

where ρmax := max | λi | and ρmin := min | λi |.

Proof. Part 1. Consider the marching scheme for equation (1) given by:

yk+1 = Φyk + F−1
1 τBu (23)

where Φ is the marching matrix given by

Φ := (I − τθA)−1(I + τ(1 − θ)A). (24)

The stability condition for (23) is given by

| (1 − τθλi)
−1(1 + τ(1 − θ)λi) |≤ 1 (25)
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or equivalently,

1 + τ(1 − θ)λi ≤ 1 − τθλi (26)

−1 − τ(1 − θ)λi ≤ 1 − τθλi. (27)

From (26), we obtain τλi ≤ 0 and τ | λi | (1 − 2θ) ≤ 2 since λi < 0. In the
case θ ≥ 1/2, there is no restriction on τ , consequently the marching scheme is
unconditionally stable. On other hand, if θ < 1/2 then 0 < (1− 2θ) and in order
for the scheme to be stable it is necessary that τ ≤ 2/ ((1 − 2θ)ρmax). In this
case, the marching scheme is conditionally stable.

Part 2. To analyze the condition number of matrix EET , we consider the
structure of the block matrix given by:

EET =



















F1F
T
1 −F1F

T
0

−F0F
T
1 F0F

T
0 + F1F

T
1 −F1F

T
0

−F0F
T
1 F0F

T
0 + F1F

T
1 −F1F

T
0

. . .
. . .

. . .

−F0F
T
1 F0F

T
0 + F1F

T
1



















.

(28)
We define QTAQ = Λ = diag(λi) as the eigendecomposition of A where matrix
Q = [q1, . . . , qn] is orthogonal. The diagonalization of F0 and F1 using Q is
denoted Λ0 = QTF0Q = QT (I−τθA)Q and Λ1 = QTF1Q = QT (I+τ(1−θ)A)Q,
respectively. Then, the block sub-matrices of EET are diagonalized and EET

can be expressed in the form:

EET →















Λ2
1 −Λ0Λ1

−Λ0Λ1 Λ2
0 + Λ2

1 −Λ1Λ0

−Λ0Λ1 Λ2
0 + Λ2

1 −Λ1Λ0

. . .
. . .

. . .

−Λ0Λ1 Λ2
0 + Λ2

1















. (29)

We next permute matrix (29) by a matrix P by ordering the eigenvalues to
obtain blocks with structure:

Θi := (PEETPT )i =



















a2
i −aibi

−aibi a2
i + b2i −aibi
−aibi a2

i + b2i −aibi

. . .
. . .

. . .

−aibi a2
i + b2i



















, (30)

where bi := (1+ τ(1−θ)λi) and ai := (1− τθλi). Gershgorin Theorem [2] yields:

| µ(Θi) − a2
i |≤| aibi | or | µ(Θi) − a2

i − b2i | ≤ 2 | aibi | (31)
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Using condition (25), we guarantee stability when | bi |≤| ai | obtaining

µ(Θi) ≤ max
(

| ai | (| ai | + | bi |) , (| ai | + | bi |)
2
)

≤ max 4 | ai |
2 (32)

and

µ(Θi) ≥ min
(

(

| ai |
2 − | ai || bi |

)

, (| ai | − | bi |)
2
)

≥ min (| ai | − | bi |)
2
.(33)

To obtain an upper bound for µ(Θi) from (32), we define ρmax := max | λi |,

therefore we have µ(Θi) ≤ 4 (1 + τθρmax)
2
. To obtain a lower bound for µ(Θi),

from (33) we define ρmin := min | λi | obtaining µ(Θi) ≥ (τρmin)2. Therefore,
the condition number for the matrix EET in terms of the upper and lower bound
is given by:

cond(EET ) ≤ 4

(

1 + τθρmax

τρmin

)2

. (34)

This completes the proof.

Remark. Notice that for both finite difference or finite element discretizations
on a domain of size O(1), the eigenvalues of matrix A satisfies the bounds α1 ≤
|λi(A)| ≤ α2h

−2 Then using (34) we obtain:

cond(EET ) ≈

(

1 + τθα2h
−2

τα1

)2

. (35)

Therefore, matrix E is ill-conditioned O(h−4) when τ and h are refined. To solve
system (20) using Uzawa’s method, it is necessary to solve at each iteration
−(EK−1ET + NG−1NT )p = f − Eg. Matrix S := (EK−1ET + NG−1NT ) is
the Schur complement of system (20) with respect to the Lagrange multiplier p.

Next, we analyze the condition number of S. Notice that due to the positive
semi-definiteness of matrix C in (18), we obtain in the sense of quadratic forms
that K−1 = (Z + Γ )−1 ≤ Z−1 and apply it in the following estimate for the
condition number of the Schur complement S. Henceforth, we normalize q = 1.

Lemma 1. Let the upper and lower bound for the singular values of EET be
given by 4(1 + τθρmax)

2 and (τρmin)2, respectively. Let us assume, using (9)
and (10), that the mass matrices Z, G, N , and Γ satisfy

c1τy
T y ≤ yTZy ≤ c2τy

T y (36)

c3rτh
duT u ≤ uTGu ≤ c4rτh

duT u, (37)

c5τ
2hdpT p ≤ pTNNT p ≤ c6τ

2hdpT p and (38)

0 ≤ yTΓy ≤ c7sy
T y. (39)

Then, the condition number of matrix S is given by:

cond(S) =
c4r(c5τ + c7s)

c1τc3r

4c3r(1 + ρmax τθ)
2 + c6τ

2c1
c4r(τρmin)2 + c5τ(c2τ + c7s)

(40)

where S := EK−1ET +NG−1NT is the Schur complement.
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Proof. Using the upper and lower bounds for K, EET , NNT and G we obtain:
Upper bound:

pTSp = pTEK−1ET p + pTNG−1NT p (41)

≤ pTEZ−1ET p + pTNG−1NT p (42)

≤
1

c1τ
pTEET p +

1

c3rτhd
pTNNT p (43)

≤

(

4

c1τ
(1 + τθρmax)2 +

c6τ
2hd

c3rτhd

)

pT p (44)

=

(

4

c1τ
(1 + τθρmax)2 +

c6τ

c3r

)

pT p. (45)

Lower bound:

pTSp ≥
1

(c2τ + c7)
pTEET p +

1

c4rτhd
pTNNT p (46)

≥

(

(τρmin)2

(c2τ + c7s)
+
c5τ

2hd

c4rτhd

)

pT p (47)

=

(

(τρmin)2

(c2τ + c7s)
+
c5τ

c4r

)

pT p. (48)

Therefore, the condition number of matrix S can be estimated by:

cond(S) =
c4r(c5τ + c7s)

c1τc3r

4c3r(1 + ρmax τθ)
2 + c6τ

2c1
c4r(τρmin)2 + c5τ(c2τ + c7s)

. (49)

Remark The estimation given in (49) shows that matrix S is ill-conditioned.
Indeed, let all the constants ci = 1. Then the expression (49) reduces to:

cond(S) ≈
τ + s

τ

r(1 + h−2τθ)2 + τ2

rτ2 + τ2 + τs
. (50)

Taking θ = 1/2 and h ≈ τ , and with the reasonable assumption that 0 <
O(h4) ≤ r ≤ O(s/τ), we obtain cond(S) ≈ O(rh−4).

4 The reduced system for u

We next consider an algorithm based on the solution of a reduced Schur com-
plement for the control variable u. Assuming that G 6= 0 and solving the
first and third block row in (20) will yield p = −E−TKy + E−TKg and
y = −E−1Nu + E−1f , respectively. Then, system (20) can be reduced to the
following Schur complement system for u:

(G+NTE−TKE−1N)u = NTE−TKE−1f −NTE−TKg. (51)

Matrix (G + NTE−TKE−1N) is symmetric and positive definite. In the next
Lemma, we show that (G+NTE−TKE−1N) is spectrally equivalent to G.
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Lemma 2. Let the bounds for G, E, K, N and Γ be as presented in Lemma 1.
Then, there exist constants µmim and µmax, independent of h and u, such that

µminuTGu ≤ uT (NTE−TKE−1N)u ≤ µmaxu
TGu (52)

Proof. Using the upper and lower bounds for K, EET , NNT and G we obtain:
Upper bound:

uTNTE−TKE−1Nu ≤ (c2τ + c7s)u
TNTE−TE−1Nu (53)

≤
(c2τ + c7s)

(τρmin)2
uTNTNu (54)

≤
(c2τ + c7s)c6τ

2hd

(τρmin)2
uT u (55)

=
(c2τ + c7s)c6h

d

(ρmin)2
uT u (56)

≤
(c2τ + c7s)c6
(ρmin)2c3rτ

uTGu (57)

= µmax uTGu. (58)

Lower bound:

uTNTE−TKE−1Nu ≥ (c1τ)u
TNTE−TE−1Nu (59)

≥
c1τ

4(1 + τρmaxθ)2
uTNTNu (60)

≥
c1c5τ

3hd

4(1 + τρmaxθ)2
uT u (61)

≥
c1c5τ

2hd

4(1 + τρmaxθ)2c4r
uTGu (62)

= µmin uTGu. (63)

This completes the proof.

First Algorithm. The Schur complement system (51) can be solved using a
CG algorithm (conjugate gradient) using the matrix G as a preconditioner. We
note that

uTGu ≤ uT (G+NTE−TKE−1N)u ≤ (1 + µmax)uTGu. (64)

Since the ρmin is O(1) and ρmax is O(h−4), it is easy to see that µmin =

O(h4

r ) and µmax = O( 1+s/τ
r ). Hence, the rate of convergence of this algorithm is

independent of h and with a condition number estimate bounded by O(1+
1+ s

τ

r ).
This algorithm is simple to implement however but has two drawbacks. It is a
double iteration algorithm (require two applications of E−1) and it is not directly
parallelizable.
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Second Algorithm. To overcome the mentioned drawbacks, we define b̂ :=
−NTE−TKE−1f+NTE−TKg and the auxiliary variable w := −E−TKE−1Nu.
Hence system (51) can be written in the form:

[

EK−1ET N
NT −G

] [

w

u

]

=

[

0

b̂

]

. (65)

In this case, the action of E−1 is required only in a pre-computed step to assemble
the right hand side input vector b̂. System (65) is symmetric and indefinite.
Thus, it can be solved iteratively using MINRES with a positive definite block
diagonal preconditioner diag(EoK

−1
o ET

o , Go), where Ko is any matrix spectrally
equivalent to the mass matrix K, matrix Eo is any matrix spectrally equivalent
(or a preconditioner) to the evolution matrix E [6, 13, 3], and matrix Go is a
preconditioner for matrix G. The following Theorem estimates the condition
number of the preconditioned system.

Theorem 2. Let the bounds for matrices G, E, K, N and Γ be as presented in
lemma 1 and denote P := blockdiag(EK−1ET , G) the block diagonal precondi-
tioner and H the coefficient matrix of system (65). Then, the condition number
of the preconditioned system satisfies the bound:

κ(P−1H) ≤ O

(

(

1 +
1 + s/τ

r

)1/2
)

. (66)

Proof. Since the preconditioner P is positive definite, we consider the generalizes
eigenvalue problem given by:

[

EK−1ET N
NT −G

] [

w

u

]

= λ

[

EK−1ET

G

] [

w

u

]

, (67)

We obtain the equations

(λ− 1)EK−1ET w = Nu and (λ+ 1)Gu = NT w. (68)

From these equations we obtain NTE−TKE−1Nu = (λ2−1)Gu where (λ2−1) is
the generalized eigenvalue of NTE−TKE−1N with respect to G. Using Lemma
2, we obtain bounds for λ as follows:

max|λ| ≤ (1 + µmax)
1/2

= O

(

(

1 +
1 + s/τ

r

)1/2
)

(69)

min|λ| ≥ (1 + µmin)
1/2

= O (1) . (70)

The theorem follows, since:

κ(P−1H) ≤
max|λ|

min|λ|
. (71)

This completes the proof.

Remark. Generalization of this theorem for matrices Go and EoK
−1
o ET

o (spec-
trally equivalent to G and EK−1ET respectively) follows directly from ([5]).
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Remark. Applying matrix E is very unstable, but applying matrix E−1 is
stable. The algorithms presented here do not require application of E or ET

since

PH =

[

I E−TKE−1N
G−1NT −I

]

. (72)

5 Numerical Experiments

In this section, we consider the numerical solution of the optimal control of the
1D-heat equation. In this case, the constraints are given by:

∂tz − ∂xxz = v, 0 < x < 1, t > 0

with boundary conditions z(t, 0) = 0 and z(t, 1) = 0 for t ≥ 0, with initial data
z(0, x) = 0 for x ∈ [0, 1], and with the performance function z∗ = sin(πx) for
all t ∈ [0, 1]. Following [8], we take q = 1 and r = 0.0001. The trapezoidal rule
discretization is considered in the numerical experiments. As a stopping criteria
for the iterative solvers, we take ‖rk‖/‖r0‖ ≤ 10−3 where rk is the residual at
each iteration k.

Table 1. Number of CG iterations for Algorithm 1. The parameters s = 0 (s = 1).

Nx \ Nt 32 64 128 256 512

32 10 (9) 11 (9) 11 (10) 11 (11) 11 (11)
64 10 (9) 11 (9) 11 (10) 11 (11) 11 (11)
128 10 (9) 11 (10) 11 (11) 11 (11) 11 (11)
256 10 (9) 11 (10) 11 (11) 11 (11) 11 (11)
512 10 (9) 11 (10) 11 (11) 11 (11) 11 (11)

Algorithm 1: Reduction to u. In the first case we consider s = 0 in the
cost function. We use matrix G as a preconditioner and CG for solving the pre-
conditioned resulting system. Table 1 presents the number of iterations when
both time and space grid are refined. Notice that, the number of iterations is
independent of both the time discretization τ and space discretization h. Hence,
the algorithm is scalable both in time and space grid parameters, as predicted
by the analysis developed in Section 4. Table 1 also presents the number of iter-
ations, within parenthesis, when parameter s = 1, and the number of iterations
also remains constant.

Algorithm 2. Table 2 presents the number of iterations when both time and
space grid are refined. Notice that, as predicted by the analysis, when the time
grid is refined more than τ = 1/128, the number of iterations remains bounded
when both time discretization τ and space discretization h are refined.

In Table 3, we make a comparison of both algorithms for different values of r
and s. We note that both algorithms are robust for a large range of values r and
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Table 2. Number of MINRES iterations for algorithm 2. Parameter s = 0 (s = 1).

Nx \ Nt 32 64 128 256 512

32 20 (18) 20 (18) 22 (18) 22 (18) 22 (20)
64 20 (18) 20 (18) 22 (18) 22 (18) 22 (20)
128 20 (18) 20 (18) 22 (18) 22 (18) 22 (20)
256 20 (18) 20 (18) 22 (18) 22 (18) 22 (20)
512 20 (18) 20 (18) 22 (18) 22 (18) 22 (20)

s, therefore the analysis developed on Section 4 is not sharp with repect to the
dependence on the coefficient r and s. Notice that when s and r are increased,

Table 3. Comparison of the number of iterations for different values of r and s. The
constant s = 10. Acronym: Algoritm 1: Alg. 1, Algoritm 2: Alg. 2 and ∗: Non acceptable
solution.

Acronym \ r 10−2 10−3 10−4 10−5

s = 0 Alg.1 7 11 14 14
Alg.2 12 20 26 26

s = 1 Alg.1 6∗ 9 14 14
Alg.2 12∗ 18 20 20

s = 10 Alg.1 5∗ 5 5 5
Alg.2 10∗ 10 10 10

the number of iterations decrease however the solution is not acceptable since it is
not close enough to the target function z∗. In addition, if the term s

2‖z(v)(tf , x)−
z∗(tf , x)‖

2
L2(Ω) is considered, depending on the scaling of the matrices R, B and

K the solution may exhibit boundary layer character. This analysis is beyond
the scope of this article.

6 Concluding Remarks

In this paper we have described two approaches for iteratively solving the linear
quadratic parabolic optimal control problem. The first method is based on the
CG solution of a Schur complement. This is obtained by reducing the saddle point
system to the system associated with the control variable. This method is simple
to implement but requires double iteration. The second method avoids double
iteration introducing an auxiliary variable. The resulting system is symmetric
and indefinite, so that MINRES can be used. The structure of this method also
allows parallel block preconditioners. The preconditioners described yield a rate
of convergence independent of the time and space parameters.
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