
Solving Combinatorial Problems:
An XML-based

Software Development Infrastructure ?

Rui Barbosa Martins12, Maria Antónia Carravilla12, Cristina Ribeiro12

1 FEUP—Faculdade de Engenharia da Universidade do Porto
2 INESC—Porto

Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
{ei01018,mac,mcr}@fe.up.pt

Abstract. The resolution of combinatorial problems typically requires
the articulation of tools that range from modeling languages to dedicated
solvers, including processing input data sets and visualizing results.
This work concerns the improvement of the software development en-
vironment for a research project using a custom-designed XML dialect.
NestingXML has been designed to capture one kind of combinatorial
problems in what concerns their input and output data. The dialect is
used for storing problem and solution descriptions in a flexible way. In
a project context, data formatted according to the dialect are impor-
ted into a Java API used for developing solvers and associated tools.
The problem description is enriched with both preprocessing data and
solution descriptions.
We describe the NestingXML dialect and the Java API used in the pro-
ject and illustrate their use in the problem-solving process. The resulting
environment demonstrates increased flexibility in data representations
and will become an easy integration medium for new team members.

Keywords: XML, Cutting and Packing, Constraint Programming.

1 Introduction

The resolution of combinatorial problems typically requires the articulation of
tools that range from modeling languages to dedicated solvers, and also include
the processing of input data sets and the visualization of results.

A research team involved in developing solutions for a class of combinatorial
problems faces the significant overhead of maintaining consistent representa-
tions for problem instances and solution descriptions that can be shared among
researchers who are working on different approaches.

The GLOBALNest project (Global Constraints for Nesting Problems) is fo-
cused on developing constraint programming solutions for nesting problems,

? Supported by FCT under project POSI/SRI/45379/2002 (GLOBALNest)

a category of cutting and packing problems where polygon-shaped pieces are
placed over a board and the goal is to minimize the length of the resulting
layout. The development and test of new solution methods requires the use of
known problem instances and the execution of test suits under different program
configurations.

In the context of the project, data for the problem instances is available in the
form of text files. The resolution methods make use of previously defined modules
for geometric manipulations; ad hoc formats have been specified for their output.
In the course of some of the project developments, extra information has been
required for some of the modules and the data formats were modified accordingly.
It soon became clear that extending and modifying the data format would be
the rule in projects of this nature, and that a more flexible representation was
needed.

An XML data format has been defined covering the expected complexity
of the descriptions for this class of problems and their solutions. The existing
tools for parsing input data and presenting results have been kept as “legacy
data” transformers and new tools are being developed for manipulating this
more expressive data format.

The project development platform has a Java API where the concepts of the
problem domain are represented. Several tools that deal with the geometry and
some output format generators were developed based on the API.

The paper describes an infrastructure for software development and solver
evaluation comprising the XML data format (NestingXML), the Java API and
the set of tools that support the preparation of inputs for the solvers and the
evaluation of results.

The paper is organized as follows. Section 2 briefly describes the project de-
velopment environment. The formats used for data input and output are detailed
in Section 3. The Java API used in the project to capture the main concepts of
the problem domain is presented in Section 4. The XML data format developed
for this domain is the subject of Section 5, followed by the update of the API
in Section 6. Section 7 illustrates the use of the dialect and the API and some
conclusions follow.

2 Combinatorial Problems and Solutions

Combinatorial problems typically require modeling a problem domain, charac-
terizing feasible solutions and using a search strategy to explore the solution
space and find solutions that best satisfy a problem goal.

Research in combinatorial problems involves developing new representations
for the problem domains, to ease the expression of the constraints that define
feasibility, and devising new search strategies that lead to the exploration of
either larger or more promising regions of the search space.

In the case of cutting and packing problems, the goal is to minimize waste
when packing items in a container or cutting out small pieces from a surface of

raw material. Fig. 1illustrates a solution layout, with several polygonal pieces
positioned on a plate.

Fig. 1. A solution for a nesting problem

The solution of a nesting problem is the choice of a position for each one of
a set of polygon-shaped pieces over a plate—a layout. It is an intrinsically 2D
problem where the central constraints must express the fact that any 2 pieces
may not overlap. The problem is being addressed in the Operations Research
community with Mixed Integer Programming and heuristic methods.

To represent “non-overlappedness” in 2D requires some geometrical prepro-
cessing of the input. Moreover, any development aimed at improving solution
quality tends to require the computation of new values to characterize either the
input or some intermediate solution configuration.

The testbed for the work described is the GLOBALNest project (Global
Constraints for Nesting Problems), a research project where the main concern
is the development of specialized constraints to handle the solution of these
problems.

In a typical solution process workflow the problem description is read from
a file into a memory representation used by the solver software. When modules
in several languages are used, intermediate files may be required to pass-on
information. If preprocessing of the input data is required, as is the case with
geometric problems, then intermediate steps add to the characterization of the
input data.

In a test setup, several input sets must be run through selected solvers in
order to compare solutions. It is interesting in this case to be able to configure
complete tests, assemble input data and collect results.

The problems tackled so far by the research team consider the board as a
rectangular stripe whose length is to be minimized. The first versions of the solver
were implemented using the SICStus-Prolog CLP-FD module [1]. In [2] and in
[3], a CLP approach to the resolution of nesting problems is presented, using
reified constraints and pieces represented by respectively convex and non-convex
polygons. In the following step a special global constraint named “outside” [4]
was developed to handle specifically the non-overlapping of a pair of general

polygons, leading to improvement of the domain reduction during search. During
this period the Web application “CortaBem” [5] was used as a tool to draw the
pieces, build the input files for the solver and draw the layouts.

In a more recent stage of the work, a solver using the global constraint “out-
side” has been implemented in ILOG with the purpose of testing another type
of tool that would allow the use of a hybrid approach, combining CP techniques
with Mixed Linear Programming.

3 Data Formats

The solution process for nesting problems is therefore a workflow with various
intermediate files and solver modules. The way test examples are stored, can
be manipulated, extended and put to some use may improve or strongly reduce
researcher’s productivity.

Initially the problem descriptions were stored in ad hoc file formats. Those
formats were conceived with the purpose of making it easy for researchers to
parse the data and feed them into their solver and there was no concern with
the extensibility of the format. But today’s ideas and data requirements for a
solver may not be tomorrow’s. During research different approaches are tried in
order to get better solutions and the need to enrich previous formats arises. The
lack of an easy way to extend format contents usually leads either to complicating
even more an existing format by hacking in new required data, or to the creation
of one more file format.

In our case study there are up to seven different formats taking an active
role for each solver iteration:

1. jfo – contains a description of the pieces and their quantities
2. brd – contains board information
3. prb – contains problem information
4. dat – contains polygon descriptions
5. nfp – contains intermediate polygons built from the polygons on the dat

format
6. si – contains input data to be directly read by the solver
7. so – contains nesting problem solutions

Some formats (dat and nfp) store intermediate results, are active for very
short periods and do not get stored after the solution process is finished. All the
other formats must be stored as each one contains unique information about the
problem or the solution.

In Listing 1 we can see some of the content of an example dat file. The
language used in some of the fields is portuguese, making it difficult to share the
format among the research community. One thing common to all formats is the
not so intuitive way data is stored. The file begins with the number of pieces to
be described (7). It then proceeds enumerating each of the polygons assigning
them a string identifier (e.g., PECA 1, defining the pieces quantity in the lot,

the number of vertices (e.g., 5) and their enumeration. Each vertex is described
by its X and Y coordinates.

To understand the format there is a need for additional information, such as
the one given above. Without that information, the meaning of the format will
be lost and the format itself becomes useless.

NUMERO DE PECAS
7

PECA 1 QUANTIDADE
5

NUMERO DE VERTICES
6

VERTICES(X,Y)
0 .0 0 .0 2
2 .0 −1.0 2
4 .0 0 .0 2
4 .0 3 .0 2
2 .0 4 .0 2
0 .0 3 .0 2

(. . .)

Listing 1: dat file content

Coping with all the scattered information of these files is not an easy task
and it tends do get harder as new problem approaches are explored.

4 The Java API

To ease the manipulation of the formats described in the previous section, we
chose to create a Java Application Programming Interface (API). The API
provides an easy way to read each format into Java data structures, and to
write the files back with added content.

These basic functionalities provided by the API allowed us to build a set
of tools to manipulate the nesting problem’s data. The first tools were built to
compute some geometric properties of the problem’s pieces. Some of these prop-
erties could then be used to generate sorted sequences of pieces to be positioned.
An example is a sequence of pieces sorted by ascending convex hull area [6].

Graphic tools have also been created on top of the API. They provide an
easy way to visualize both the problem’s lot and its solutions. The renderings
are then stored to jpeg files, allowing the representation of a problem and its
solution to be easily rendered in a web browser.

5 NestingXML

The ideas for a XML format that could fully describe a nesting problem and its
solutions first came about early 2005. In order to develop a format that would be
used by all the researchers dealing with similar problems, the format was first
developed in-house and then fully accepted by the European Research Group
on Cutting and Packing Problems [7]. We currently have a stable first version
of the XML format, for which an XML Schema is available [8]. NestingXML
accomplishes the following objectives:

– Ability to represent both very simple and very complex problem instances
in a common format.

– Ability to store both the nesting problem, its solutions and intermediate
computations in a self contained file.

– A clear, human readable format.
– An easily extensible format (due to the use of XML).

The NestingXML format is structured in five sections:

1. Information about the author and a brief description of the problem.
2. Description of the problem instance.
3. Heuristics, intermediate computations and extra information.
4. Geometrical description of all the polygons used in the problem.
5. Solutions of the problem.

The first section includes some metadata for the problem described in the
file, such as name and contacts of the author. A brief and informal description
of the problem may also be added to this section. In this description, the author
can point out interesting features of the problem that couldn’t be easily spotted
out by its formal description. A simple example of this first section can be seen
in List. 2.

<name>Nest ing problem example</name>
<author>Rui Martins</ author>
<date>2005/11/04</date>
<d e s c r i p t i o n>

A b r i e f in fo rma l d e s c r i p t i o n about the ne s t i ng problem ←↩

should be placed here .
</ d e s c r i p t i o n>
<v e r t i c e sO r i e n t a t i o n>c l o ckw i s e</ v e r t i c e sO r i e n t a t i o n>
<coo rd ina t e sOr i g in>up− l e f t</ coo rd ina t e sOr i g in>

Listing 2: Example of the first section of a NestingXML file

The formal description of the nesting problem is presented in the second
section of the NestingXML format. The section begins with the description of

the boards, which represent simple or complex geometrical 2D figures where the
pieces are positioned. A board can be described by several polygons, representing
materials of different qualities or holes, e.g., a simple way of describing a window
frame could be by defining two superimposed rectangles of different sizes, where
the smaller one is a hole. The description of the pieces to be positioned follows.
Pieces and boards use similar structures, since both represent geometrical shapes.
A small example of this section is present in List. 3. Fig. 2 has the corresponding
graphical representation.

<problem>
<boards>

<p i e c e id=”board1” quant i ty=”1”>
<component type=”0” idPolygon=”poly0 ” ←↩

xOf f s e t=” 0 .0 ” yOf f s e t=” 0 .0 ” />
<component type=”−1” idPolygon=” hole0 ” ←↩

xOf f s e t=” 6 .0 ” yOf f s e t=”−3.0” />
</ p i e c e>

</boards>
< l o t>

<p i e c e id=” p i e c e1 ” quant i ty=”1”>
. . .

</ p i e c e>
. . .

</ l o t>
</problem>

Listing 3: Example of the second section of a NestingXML file

Fig. 2. Graphical representation of the board described in List. 3

The third section is meant for researchers to store extra information on the
problem, such as time-consuming intermediate computations and information
on heuristics. Listing 4 has a short example of the XML describing Nofit Poly-
gons. Nofit polygons are a geometric transformation that makes the requirement

of “non-overlappedness” of two polygons easier to handle. Overlapping of two
polygons can be decided based on the relative position of a polygon (the nofit)
and a point. The visual representation of the computation of the nofit polygon
can be seen in Fig. 3, where polygon R is the result of the orbit movement of
polygon O around static polygon S.

<nfps>
<nfp>

<s ta t i cPo lygon idPolygon=”poly1 ” ang le=” 0 .0 ” ←↩

mirror=”none” />
<orb i t ingPo lygon idPolygon=”poly1 ” ang le=” 0 .0 ” ←↩

mirror=”none” />
<r e su l t i ngPo lygon idPolygon=”nfp p1 p1 ” />

</nfp>
. . .

</ nfps>

Listing 4: Example of the third section of a NestingXML file

Fig. 3. Graphical representation of the No Fit Polygon information described in List. 4

Section four of the NestingXML format takes advantage of the fact that
nesting problems use several geometrical data. To reduce the verbosity and avoid
duplication of information in the file, this section describes polygon line segments
and other relevant geometrical information. Each polygon represented here has
a unique id, enabling it to be used as components of the boards, pieces and other
geometrical structures. Consider for example a piece to be a square of 2× 2 and
a board with a 2×2, both of them could use a 2×2 square polygon described in
this section avoiding the duplication of information. A small example containing
the description of a triangle can be seen in List. 5. Going back to Fig. 3 one can
see two triangles which correspond to the polygon described here.

The fifth and final section of the NestingXML format is reserved to describe
the solutions of the problem, which are represented by the X and Y coordinates of

<polygons>
<polygon id=”poly1 ” nVer t i c e s=”3”>

< l i n e s>
<segment n=”1” x0=” 0 .0 ” y0=” 0 .0 ” x1=” 1 .0 ” ←↩

y1=” 1 .0 ” />
<segment n=”2” x0=” 1 .0 ” y0=” 1 .0 ” x1=” 2 .0 ” ←↩

y1=” 0 .0 ” />
<segment n=”3” x0=” 2 .0 ” y0=” 0 .0 ” x1=” 0 .0 ” ←↩

y1=” 0 .0 ” />
</ l i n e s>
<xMin>0 .0</xMin>
<xMax>2 .0</xMax>
<yMin>0 .0</yMin>
<yMax>1 .0</yMax>
<per imeter>4 .8284</ per imeter>
<area>1</ area>

</polygon>
</ polygons>

Listing 5: Example of the fourth section of a NestingXML file

the positioning points (placement vertex) of the pieces. An example of a solution
is presented in List. 6.

For the time being we chose not to create a specific element to store a nu-
meric value representing the “solution’s quality” because there is no clear way of
generalizing this. Different approaches tend to use different measures of quality.
There is room here for future extensions of NestingXML.

<s o l u t i o n s>
<s o l u t i o n>

<placement idBoard=”board1” idP i e c e=” p i e c e1 ” x=” 0 .0 ” ←↩

y=” 0 .0 ” ang le=” 0 .0 ” mirror=”none” />
<placement idBoard=”board1” idP i e c e=” p i e c e2 ” x=” 1 .0 ” ←↩

y=” 1 .0 ” ang le=” 0 .0 ” mirror=”none” />
<placement idBoard=”board1” idP i e c e=” p i e c e2 ” x=” 4 .0 ” ←↩

y=” 0 .0 ” ang le=” 0 .0 ” mirror=”none” />
<usagePercentage>15</ usagePercentage>

</ s o l u t i o n>
. . .

</ s o l u t i o n s>

Listing 6: Example of the fifth section of a NestingXML file

6 An extended API

As with the older file formats described in section 3, we have also developed a
Java API for the NestingXML format. Because we intend to maintain backward
compatibility, some code from the previous API has been integrated to enable
an easy transformation between formats. The tools developed for the previous
API have been enhanced for the new one.

In the future, it may be necessary to add new features to the XML format.
To use the new features in tools and solvers, they will have to be available in
the API. We expect that such extensions to the API can be smoothly added,
as the main concepts of the application domain are already captured in the
current API. New features will account for parsing and handling new elements
or attributes. This allows a steady evolution of the development environment.

As already stated, a NestingXML file may contain complex information re-
garding the problem, such as rotation of the pieces and multi-holed boards. While
some research teams might be using such information, we are focusing our re-
search on simpler problems. Therefore our API does not account for features we
are not currently handling.

7 The Software Development Infrastructure

We are now going to take a look at an example solving process and the way the
NestingXML file is transformed. Fig. 4 should be used along the description, as
a way of getting a visual picture of the whole process.

In a first step we create a new NestingXML file where the problem is stored,
including metadata for author and problem in the nesting root tag. To turn
our file into valid XML we should define the header describing the version and
namespace used for the document.

After creating the file’s skeleton, we need to insert the formal description
of the nesting problem. This information is inserted right after the information
added in the previous step. Because both boards and pieces are sets of polygons,
we should also add those to a specific section near the bottom of the NestingXML
file. In Fig. 4 we can see arrows coming off this step’s preview and pointing to
NestingXML sections 2 and 4. Section 2 represents the place where the boards
and the pieces are declared in the NestingXML file. Section 4 refers to the
polygon description section.

In the third step of the process, we do some intermediate computations which
will be used by some of our solvers. These data should also be stored for later
usage. The intermediate computations section in the NestingXML file is repres-
ented by number 3 in Fig. 4. Note also that section 4 is also pointed by this
process because some of the computation generate new polygon information.

The fourth and final step of our example process is the resolution of the gener-
ated problem instance. The solver retrieves the problem’s data and intermediate
computations from the proper location in the input NestingXML file. It appends
the computed solution to the last section of the file where other solutions may
already be present.

Fig. 4. Process example

8 Conclusions and Ongoing Work

The work reported here concerns part of the infrastructure put together to sup-
port a research project on Constraint Programming methods and solutions for
a class of combinatorial problems. Lines of research such as this one extend
for significant periods of time—the current project builds on results from work
done since 1997. This kind of work typically involves the collaboration of several
people, the consolidation of project results for building new approaches and the
inclusion of new collaborators at a regular pace. In this context a dependable
development environment is an important issue.

Researchers working on cutting and packing problems have collected a sig-
nificant number of benchmark problems, and new ones are proposed when new
techniques require illustration. Our project environment has shown that develop-
ing new approaches leads to the production of intermediate results that we must
organize to be used in the problem-solving process. The CortaBem application
[5] has served to test a resolution environment and provide an easy interface for
colleagues who would like to get acquainted with our work, but no easy way to
interchange problem instances and solutions was available.

The flexible representation of the NestingXML dialect has proven essential
for exploring the structure of the problem domain and for avoiding the custom
parsing and systematic migration that would otherwise be required.

The process infrastructure illustrated in Section 7 is being further developed
in the sense of automating the repeated execution of sequences of operations
on the input data to solve a problem. Data representation with NestingXML
makes some other useful products simple to define. We are currently exploring
the simplification of complex input shapes and the transformation of the output
representations into standard graphic formats that can be used for rendering
purposes [9].

9 Acknowledgments

We thank our colleagues José Fernando Oliveira and António Miguel Gomes
for contributing with their expertise on the problem domain for defining the
NestingXML dialect and for many useful discussions. João Paulo Mendes and
Hugo Almeida, members of the GLOBALNest team, have contributed the first
Java API and were also strongly engaged in the definition of NestingXML.

We thank Helmut Simonis, consultant for the GLOBALNest project, for the
emphasis given to the project development environment and for his insights on
the goals of the whole line of research.

References

1. Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint
Solver. In Glaser, H., Hartel, P., Kucken, H., eds.: Programming Languages: Imple-
mentations, Logics, and Programming. Volume 1292 of Lecture Notes in Computer
Science., Southampton, Springer-Verlag (1997) 191–206

2. Ribeiro, C., Carravilla, M.A., Oliveira, J.F.: Applying constraint logic programming
to the resolution of nesting problems. Pesquisa Operacional 19 (1999) 239–247

3. Carravilla, M.A., Ribeiro, C., Oliveira, J.F.: Solving nesting problems with non-
convex polygons by constraint logic programming. International Transactions in
Operational Research 10 (2003) 651–663

4. Ribeiro, C., Carravilla, M.A.: A global constraint for nesting problems. In Régin,
J.C., Rueher, M., eds.: CPAIOR. Volume 3011 of Lecture Notes in Computer Sci-
ence., Springer (2004) 256–270

5. GLOBALNest: GlobalNest Website (2005) http://192.168.102.63/~globalnest/
6. Mendes, J.P., Almeida, H., Ribeiro, C., Carravilla, M.A.: An Evaluation Infrastruc-

ture for Nesting Problems. Technical report, INESC-Porto (2005)
7. ESICUP: EURO Special Interest Group on Cutting and Packing (2005)

http://www.apdio.pt/sicup/

8. GLOBALNest Project Team: NestingXML Schema (2005) Dispońıvel em
http://globalnest.fe.up.pt/nesting/nesting.xsd

9. Gonçalves, B., Baldaia, N., Cerqueira, N., Martins, R.: NestingXML Visualization
and Geometric Manipulation Tools. Technical report, INESC—Porto (2006)

