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Abstract. We investigate schemes to accelerate the decay of aircraft
trailing vortices. These structures are susceptible to several instabilities
that lead to their eventual destruction. We employ an Evolution Strategy
to design a lift distribution and a lift perturbation scheme that minimize
the wake hazard as proposed in [6]. The performance of a scheme is mea-
sured as the reduction of the mean rolling moment that would be induced
on a following aircraft; it is computed by means of a Direct Numerical
Simulation using a parallel vortex particle code. We find a configuration
and a perturbation scheme characterized by an intermediate wavelength
λ ∼ 4.64, necessary to trigger medium wavelength instabilities between
tail and flap vortices and subsequently amplify long wavelength modes.

Keywords: Large Scale Simulations in CS&E, Parallel and Distributed
Computing, Numerical Algorithms for CS&E

1 Introduction

Aircraft trailing vortices are powerful flow structures inherent to the very pro-
duction of lift along the wing. These structures live long after an aircraft has
flown by and constitute a potential hazard to any following aircraft. As a conse-
quence, they require the enforcement of strict separation distances in particular
at take-off and landing. This phenomenon is the limiting constraint on airport
traffic, not without environmental consequences: longer traffic patterns lead to
more noise and air pollution in particular.

The design of schemes to accelerate the decay of trailing vortices have been
the topics of several theoretical [7, 5], experimental [6] and numerical investiga-
tions [1, 16].
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The design and optimization of a wake alleviation scheme is a complex
engineering problem. Wake decay simulations require solving the full three-
dimensional Navier-Stokes well into the non-linear regime of vortex instabilities.
These results then allow the measurement of the hazard level. This is a highly
non-linear and multi-modal optimization problem, which does not lend itself to
gradient-based methods.

In this work, we couple a derandomized Evolution Strategy with Covariance-
Matrix Adaptation (CMA-ES) to a fast parallel Navier-Stokes solver in order to
design and optimize a wake alleviation scheme. We base our work on an approach
proposed in [6]. We note that integrated optimization approaches have been used
before, albeit at a smaller scale [14].

This paper is organized as follows. Section 2 presents the problem of wake
alleviation and its statement as an optimization problem. Section 3 presents
the optimization and numerical tools of our study. In Section 4, we present our
results.

2 Optimization of wake alleviation

2.1 Alleviation scheme

We investigate the scheme proposed in [6]. This scheme relies on the periodic
deflection of wing control surfaces (flaps) in order to perturb the near wake of
the aircraft where there are several pairs of trailing vortices. The periodic control
surface motions redistribute some lift between the inboard and outboard sections
of the wing. This redistribution conserves the total lift –although not necessarily
the pitching moment of the wing–, the circulation, and a zero rolling moment.
The effect is a periodic oscillation of the positions of the tip and inboard flap
vortices. This forced an accelerated reconnection of the tip vortices, at a rate
which can be about twice as high as the regular Crow instability[6].

We will use the same perturbation amplitude as in [6] and redistribute
∆CL/CL = 6% of the total wing lift.

2.2 Optimization of the lift distribution and perturbation

In this section we describe the cost function, the parameterization of the problem
and the search space.

Cost function In the context of our optimization procedure,we will approxi-
mate the hazard posed to a following aircraft (with a wing span bfollow) by the
maximum rolling moment averaged in the streamwise direction. We define the
induced rolling moment as

Croll(x, y, z, t) =

∫ y+1/2bfollow

y−1/2bfollow
(y′ − y)uz(x, y, z, t)dy′ (1)
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Fig. 1: Wing and wake configuration

and its streamwise average as

〈Croll〉x (y, z, t) =
1

Lx

∫ Lx

0

Croll(x, y, z, t)dx . (2)

We opt to define our cost function as the maximum average rolling moment

fobj = max
y,z∈[−∞,+∞]

〈Croll〉x (y, z, τobj) (3)

taken at a fixed dimensionless time τobj = 5 and for a bfollow = 1/2bw. This de-
scent time value corresponds to a downstream distance of ∼ 4nm, which matches
the ICAO Standard Separation Distance between large jumbo jets. This manda-
tory separation grows to 6nm if the following aircraft is a light aircraft, justifying
wake destruction within this time and space interval.

Parameterization and search space We study the time evolution of the
trailing vortices under the approximation of a streamwise periodic flow. The wake
configuration is sketched in Fig. 1b. We account for the wing lift distribution
through the geometry of the flap and tip vortices; they have, respectively, the
circulations Γf and ΓT and the spans bf and bT . The wing circulation and
equivalent span can then be written as

Γw = ΓT + Γf (4)

bw =
ΓT

Γw
bT +

Γf

Γw
bf (5)

The negative lift of the horizontal tail plane (HTP) is manifested by a third
vortex pair with circulation Γt and span bt. Because this pair is generated down-
stream of the wing, we assume it to be positioned ∆zt above the wing and flap
vortices. These vortices are assumed to be Gaussian with core sizes σT , σf and
σt.



The dimensionality of our search space will be sensibly smaller than the num-
ber of parameters outlined above as we choose to constrain several engineering
characteristics of the problem. The total wing lift, proportional to Γwbw, and
the root wing circulation Γw have to be preserved. The lift redistribution is kept
at ∆CL/CL = 6% of the total wing lift. The HTP keeps the same negative lift
and the vortex core sizes do not change. The resulting search space then counts
4 parameters

α = 2π/λ is the wavenumber of the perturbation;
β = bt/bw is the span of the HTP vortices;
γ = Γf/Γw is the circulation ratio of the flap vortices;
δ = (bT − bf )/(2bw) is the separation between the tip and flap vortices.

The remaining parameters are kept constant and listed in the Table 1a. We
bound the configuration parameters in order to avoid unfeasible or physically
irrelevant configurations. The bounds are summarized in Table 1b.

Parameter Value

Γw/ν 2500
Γtbt −0.0836Γwbw
σT 0.05 bw
σf 0.05 bw
σt 0.025 bw

(a) Constants

Parameter Minimun Maximum

α 0.5 5.0
β 0.2 0.5
γ 0.1 0.5
δ 0.25 0.5

(b) Ranges

Table 1: Parameters

3 Methodology

3.1 Vortex particle method

We consider a three dimensional incompressible flow and the Navier-Stokes equa-
tions in its velocity (u)-vorticity (ω = ∇× u) form :

Dω

Dt
= (ω · ∇)u + ν∇2ω (6)

∇ · u = 0 (7)

where D
Dt = ∂

∂t + u ·∇ denotes the Lagrangian derivative and ν is the kinematic
viscosity. Vortex methods discretize the vorticity field with particles, character-
ized by a position xp, a volume Vp and a strength αp =

∫
Vp
ωdx. Particles are

convected by the flow field and their strength is modified to account for vortex
stretching and diffusion.



Using the definition of vorticity and the incompressibility constraint the ve-
locity field is computed by solving the Poisson equation

∇2u = −∇× ω . (8)

This equation will be solved on a grid by means of a Fourier solver that allows
for mixed periodic (x) and unbounded directions (y and z). We use remeshing[3,
10, 15] in order to remedy the loss of accuracy due to Lagrangian distortion.
Remeshing consists in the periodic regularization onto a grid of the particle set
via high order interpolation In the present work, remeshing is performed at the
end of each time step and uses the third order accurate M ′4 interpolation formula
of [11]. The grid/mesh allows for additional advances: differential operators (such
as those for stretching and diffusion) are evaluated on the mesh using fourth
order finite differences and the Poisson equation (Eq. 8) is solved on the grid.
The results of these calculations on the grid are then interpolated back onto the
particles. We refer to [1, 2] for details on the parallel implementation and the
periodic-unbounded Poisson solver.

The vortex particle method is particularly well-suited for our flow configu-
ration. It exploits the compact support of vorticity: particles are only needed
where vorticity is non-zero. Likewise, the grid of the unbounded-periodic Pois-
son solver tracks the support of vorticity and grows or shrinks accordingly in
the transverse directions. Finally, the method exhibits accuracy, robustness and
relaxed stability properties for advection[4].

3.2 Evolution Strategy

We use a state-of-the-art Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES)[8]. CMA-ES belongs to the class of Evolutionary Algorithms com-
prising methods that are inspired by the principles of natural evolution to solve
optimization and learning problems. It is operating with real valued parameters
and adapts a Gaussian sampling distribution from the information acquired in
the course of the optimization.

The gradient of the cost function in the search space is not readily available
in the present investigation: an adjoint approach would be impractical and Finite
Differences involve a stepsize selection procedure. The need for robustness and
the likelihood of local minima in the cost function therefore close the case for
CMA-ES. This requirement of robustness and the dimensionality of the problem
(4) impose the population size of the Evolution Strategy, i.e. the number of
function evaluations needed at every iteration of CMA-ES. We set it to 10 based
on the investigations in [9].

Finally, we note that the search space is bounded through the constraints of
Table 1b. These boundaries are enforced by biasing the sampling distributions,
i.e. through a rejection algorithm.

3.3 Coupling and computation

Every evaluation of the cost function is carried out by our parallel vortex particle
code[1] and can involve running on hundreds of processors for several hours. Our



approach consisted in dissociating this evaluation process from the optimization
code. The latter is not computationally intensive and can easily run on a personal
workstation; the former requires access to parallel architectures counting several
hundred cores, typically in a supercomputing center, enabling the fast evaluation
of several candidates of a population in parallel. This allows us to use an existing
CMA-ES matlab implementation1 and to only implement the evaluation of the
cost function.

This matlab function determines the computational problem size from well-
resolvedness considerations and then chooses a supercomputer partition size that
keeps the wallclock duration of a simulation approximately constant (here be-
tween 4 and 12 hours). It generates the control files and scripts necessary to
submit the parallel job on the super-computer queue, copies them and submits
the job remotely. Several jobs –10 in this study–are submitted at the same time
as they correspond to the function evaluations inside an iteration of CMA-ES.
Their statuses are monitored and upon completion, their results are copied back
in order to post-process them and return a scalar fobj(x).

4 Results

4.1 Optimization

The history of the optimization is shown in Fig. 2. We see that CMA-ES went
through 34 iterations, or 340 evaluations. The evaluations resulted in simulations
running on Cray XT5 partitions ranging from 64 to 256 cores for run times
between 6 and 12 wallclock hours. This represents a total of 270, 000 CPU hours.

The optimization was initialized in the center of our parameter intervals and
converged (see Fig. 2) to a point which reduces the wake hazard by a factor of
4 with respect to the initial guess.

4.2 Optimum parameter set

The best candidate found over the course of the optimization is the case 174; it
is described by the parameters (α, β, γ, δ) = (1.3544, 0.48186, 0.47542, 0.48261).
After encountering this point, the Evolution Strategy searches its neighborhood
and eventually converges to this point (see Fig. 2b).

This candidate is characterized by a wavelength λ = 4.64 bw sensibly smaller
than the wavelength of the Crow instability for the equivalent wing vortex pair
λCrow ∼ 8 bw. Fig. 3 shows the evolution of the flow. The early phase is charac-
terized by the fast growth of medium wavelength instabilities between the tail
and flap vortices (see Fig. 3b and Fig. 3c). The reconnections generate dipoles
similar to Ω-loops[12] which perturb the tip vortices and reconnect with them
(Fig. 3d).

The outstanding features of the optimum become more apparent in a com-
parison with another less performant candidate. Fig. 4 shows the development

1 available at www.cse-lab.ethz.ch
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Fig. 2: CMA-ES optimization history: evolution of the best cost function
achieved in current generation and parameters.

of the best candidate of the first iteration (case 2), described by (α, β, γ, δ) =
(2.1606, 0.37654, 0.13392, 0.42296) and thus a wavelength λ = 2.91. This case
shows that even though its vortex dynamics produce a fast growing medium-
wavelength instability between the flap and tail vortices, they do not perturb
the tip vortices appreciably. The flow generates large dipoles (Fig. 4b and 4c)
which get twirled around the tip vortices (Fig. 4d). This leads to fairly large
secondary structures (Fig. 4e) but keeps the tip vortices relatively straight and
unaffected.

In the optimum case, the transverse structures are smaller but more impor-
tantly, the tip vortices are displaced vertically over a half wavelength (Fig. 3c to
3f). In fact, this segmentation of the tip vortices is even apparent in the contours
of the average rolling moment, shown in Fig. 5. The cores are distinguishable
at two levels (Fig. 5d) thus causing the average moment to be roughly halved
along the axes of these cores.

This effect appears to contribute substantially to the overall dissipation of the
wake. And even more so if we consider the rolling moments of case 2 where there
is no vertical spreading of the cores or halving of the average moment(Fig. 6).

5 Conclusions

We have coupled a derandomized Evolution Strategy and an efficient parallel
Navier-Stokes solver in order to optimize a wake alleviation scheme. The opti-
mization relied on the parameterization of the wake configuration and the use
of a wake hazard measurement for the cost function. Convergence of the ES
required hundreds of function evaluations which were computed remotely on a
supercomputing cluster.

An optimum was found at an intermediate wavelength λ = 4.64bw. For typ-
ical approach speeds, this corresponds to an actuation frequency which is in
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Fig. 3: Optimum parameter set (case 174): isosurfaces of vorticity norm ‖ω‖ =
0.01, 0.02, 0.04, 0.08Γw/(πσ
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(a) τ = 0 (b) τ = 0.49

(c) τ = 1.09 (d) τ = 1.94

(e) τ = 2.91 (f) τ = 4.28

Fig. 4: Best candidate of the first generation (case 2): isosurfaces of vorticity
norm ‖ω‖ = 0.01, 0.02, 0.04, 0.08Γw/(πσ
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(a) τ = 0 (b) τ = 0.53

(c) τ = 1.62 (d) τ = 2.81

(e) τ = 3.53 (f) τ = 5.0

Fig. 5: Optimum parameter set (case 174): streamwise-averaged rolling moment
〈Croll〉x



(a) τ = 0 (b) τ = 0.49

(c) τ = 1.66 (d) τ = 2.91

(e) τ = 3.56 (f) τ = 5.0

Fig. 6: Best candidate of the first generation (case 2): streamwise-averaged
rolling moment 〈Croll〉x



the sub-Hertz range f ∼ 0.2 − 0.4Hz. The perturbation triggers fast-growing
medium wavelength instabilities and vortex reconnections. The resulting flow
disrupts the tip vortices and smears their induced rolling moment.

The present results were obtained from Direct Numerical Simulations at a
moderate Reynolds number of 2500. While it may be argued that this mimics a
uniform turbulent viscosity (see [13]), this constitutes a very crude RANS and
future simulations will be carried out with an actual LES model.

Other future work areas include the addition of noise in the initial conditions
in order to favor robust alleviation schemes over the course of the optimization. In
addition, the cost function based on a fixed time measurement will be abandoned
in favor of a time window average of the wake hazard. Finally, we plan to account
for the spatial development of the flow and track the actuation effects more
realistically. We will simulate the perturbed lift distribution itself, capture its
effect in the near wake and then start a streamwise periodic simulation from the
established vortex wake field.
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